
wxErlang - Speeding Up

This is a sequel to my earlier, G etting S tarted . There, we went through what wxErlang is, ie the wx

library in the Erlang distribution.

It is, yes, an Erlang binding to the core wxWidgets GUI library, but it uses a different approach to
event handling, making good use of Erlang's message passing paradigm. In particular, it provides

the wx_object abstraction, which allows us to treat a widget, simple or composed, as an OTP

gen_server. We saw how to use the wx_object, how to layout widgets by means of sizers and

how to shape the provided widgets to our liking.

In this piece we will go a step further. We will learn how to draw and we will use a part of what
we'll learn to build a chess board.

We will then construct a system where two players, each sitting on a computer of his own, will use
the chess board and a modified version of the chess clock we developed in Getting Started to play a
complete game.

In so doing, we will learn more about some of the peculiarities of wxErlang and also something
about how distributed Erlang works and how it can be a powerful complement to our GUI
endeavours.

In Device Contexts, we will learn what device contexts are and how to draw line and various
shapes. We will learn how these functions are affected by clipping and logical functions. We'll also
see the peculiarity of paint and size events and how to handle them. We'll see some utility fucntions
like the use of the clipboard, images and bitmaps.

In Chessboard we will learn more about images and bitmaps and mouse events. We will see what
flickering is and how we can minimize it.

In Chessboard revisited, we will talk about cursor shapes and we will construct the chess board out
of 64 processes, one for each square of the chess board.

In Chess Player, we will put the board we developed into a frame together with the two clocks and
the button to say the player has moved the piece. In doing this, we will go through some quirks with
static texts and learn how to handle keyboard events.

In Playing the game, we will learn about menus. We will get to play a game between two players.
This requires distributed Erlang which we will see very briefly as this is about wxErlang and not
distributed Erlang. Nevertheless, if you are not very familiar with distributed systems, I encourage
you to go through the code to see how message exchanges between processes on remote nodes can
be employed in simple applications like this, and by extension in complex ones.

I'm really curious to know if people who have experience with technologies other than Erlang find
this prototype too complex or simpler than if it had been done in the technologies familiar to them.
So please share your considerations. Thanks.

https://arifishaq.files.wordpress.com/2017/12/wxerlang-getting-started.pdf
https://arifishaq.files.wordpress.com/2017/12/wxerlang-getting-started.pdf
http://wxwidgets.org/
https://arifishaq.files.wordpress.com/2017/12/wxerlang-getting-started.pdf
https://arifishaq.files.wordpress.com/2017/12/wxerlang-getting-started.pdf
https://arifishaq.files.wordpress.com/2017/12/wxerlang-getting-started.pdf

Unlike Getting Started I have not put all of the code in the text as it would have been too bulky.
Instead, you can download it at github. It is divided up into several directories. Each directory
should be self-sufficient, so many files are simply replicated between one directory and the other.

(c) Arif Ishaq - 2018

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

Table of Contents
wxErlang - Speeding Up..1
Device Contexts..3
Chessboard...20
Chessboard revisited...28
Chess Player...37
Playing the game..46

https://github.com/arifishaq/wxerlang

Device Contexts
Let's say we want to draw something, for example a chart, a graph, or to compose some picture.
Can we do that with wxErlang?

As we saw in Getting Started, one easy way to find it out would be to go through the examples in

wx:demo/0. Another would be to go through the wxWidgets documentation. There we will find a

rough guide to GUI application development. I think it is instructive to go through it. It answers our
question on if and how we can do drawings, and we can also spot where wxErlang differs from
wxWidgets:

Writing a wxWidgets application: a rough guide
To set a wxWidgets application going, you will need to derive a wxApp class and override
wxApp::OnInit.

We use wx:new() to initialize wxWidgets. We could actually make an Erlang application and have
wx_objects run as supervised processes.

An application must have a top-level wxFrame or wxDialog window. Each frame may contain one
or more instances of classes such as wxPanel, wxSplitterWindow or other windows and controls.

A frame can have a wxMenuBar, a wxToolBar, a status line, and a wxIcon for when the frame is
iconized.

A wxPanel is used to place controls (classes derived from wxControl) which are used for user
interaction. Examples of controls are wxButton, wxCheckBox, wxChoice, wxListBox,
wxRadioBox, wxSlider.

Instances of wxDialog can also be used for controls and they have the advantage of not requiring a
separate frame.

Instead of creating a dialog box and populating it with items, it is possible to choose one of the
convenient common dialog classes, such as wxMessageDialog and wxFileDialog.

You never draw directly onto a window - you use a device context (DC). wxDC is the base for
wxClientDC, wxPaintDC, wxMemoryDC, wxPostScriptDC, wxMemoryDC, wxMetafileDC and
wxPrinterDC. If your drawing functions have wxDC as a parameter, you can pass any of these DCs
to the function, and thus use the same code to draw to several different devices. You can draw using
the member functions of wxDC, such as wxDC::DrawLine and wxDC::DrawText. Control colour
on a window (wxColour) with brushes (wxBrush) and pens (wxPen).

There. That's the answer. We can draw, and the means to draw is a device context.

To intercept events, you add a DECLARE_EVENT_TABLE macro to the window class
declaration, and put a BEGIN_EVENT_TABLE ... END_EVENT_TABLE block in the
implementation file. Between these macros, you add event macros which map the event (such as a
mouse click) to a member function. These might override predefined event handlers such as for
wxKeyEvent and wxMouseEvent.

No, we don't do that in wx. Events get sent to Erlang processes as Erlang messages. Unless you
decide to use callback functions.

Most modern applications will have an on-line, hypertext help system; for this, you need wxHelp
and the wxHelpController class to control wxHelp.

http://docs.wxwidgets.org/2.8.12/wx_roughguide.html#roughguide

There is no help controller as such, though we can intercept wxHelp events just as any other event
and deal with them. The launchDefaultBrowser/1,2 functions in wx_misc module can be used to
open a URL. See wx:demo/0 for an actual example.

GUI applications aren't all graphical wizardry. List and hash table needs are catered for by wxList
and wxHashMap. You will undoubtedly need some platform-independent file functions, and you
may find it handy to maintain and search a list of paths using wxPathList. There's a miscellany of
operating system and other functions.

Yes, that's true, but we don't need any of these from wxWidgets. Erlang/OTP already has, IMHO, a
richer set of functions. As we will see, Erlang's constructs are extremely powerful.

Ok, so we need a device context, but what is it?

The wxWidgets documentation tells us:

A wxDC is a device context onto which graphics and text can be drawn. It is intended to represent a
number of output devices in a generic way, so a window can have a device context associated with
it, and a printer also has a device context. In this way, the same piece of code may write to a
number of different devices, if the device context is used as a parameter.

Notice that wxDC is an abstract base class and can't be created directly, please use wxPaintDC,
wxClientDC, wxWindowDC, wxScreenDC, wxMemoryDC or wxPrinterDC.

To be honest, I don't understand much from this. Some place in the wxWidgets documentation I
have also seen device contexts explained as surfaces on which you can draw.

I try to look at it this way: wxDC is an API that abstracts out the ways to draw on objects - devices -

such as frames, screens, printers and bitmaps. Instead of extending the APIs of those devices,
wxWidgets associates other objects - device contexts - to them, to take care of the API

implementation. In other words, the objects in wxDC class hierarchy are being delegated the job of

drawing on the relative objets. So for the Window device, we have a wxWindowDC. For a Printer

device, we have wxPrinterDC, and so on.

One important device is a wxBitmap, which represents a pixmap in memory. The associated device

context is the wxMemoryDC. Actually, any DC can be imagined as a pixmap, even though the

associated device is difficult to imagine as such. (eg a postscript printer).

Enough talk. We need to get some hands on experience. Off to the shell!

1> wx:new().
{wx_ref,0,wx,[]}
2> Frame = wxFrame:new(wx:null(), -1, "Linux").
{wx_ref,35,wxFrame,[]}
3> wxFrame:show(Frame).
true
4> DC = wxWindowDC:new(Frame).
{wx_ref,36,wxWindowDC,[]}
5> wxDC:drawText(DC, "wxErlang is cool!", {50,50}).
ok

And yes, the message got printed, both in Linux (Mint), as well as in Windows (7).

http://docs.wxwidgets.org/2.8.12/wx_wxdc.html#wxdc

With a difference, though. The position of the text is not the same as is evident by the blue rectangle
I have placed on the corner to figure out what the difference is.

Let's have a look at the wxWidgets documentation:

A wxWindowDC must be constructed if an application wishes to paint on the whole area of a
window (client and decorations). This should normally be constructed as a temporary stack object;
don't store a wxWindowDC object.

To draw on a window from inside OnPaint, construct a wxPaintDC object.

To draw on the client area of a window from outside OnPaint, construct a wxClientDC object.

To draw on the whole window including decorations, construct a wxWindowDC object (Windows
only).

A bit ambiguous, but practically, when you use wxWindowDC in Windows, the coordinate system

origin is at the top-left of the entire window, including any decorations or borders. However, at least
with the distribution I have, I cannot get to actually draw on the decorations. In Linux, on the other
hand (again in my distribution), it is at the top-left of the client area.

Notice, though, that you can construct a wxPaintDC object from inside OnPaint, or in wx, from
inside a callback.

If we had used a wxClientDC, instead of a wxWindowsDC, we would have gotten:

And this time the position within the client area is the same in both platforms. In other words, if you

want consistent behaviour across both platforms, better use wxClientDC.

The text got drawn in the default font and with the default text foreground colours. This can be

changed. The font with wxDC:setFont/2, specifying a wxFont. We already saw in Getting

Started how to create wxFont objects. The colour is a wx_colour object, an RGB tuple, specified

in wxDC:setTextForeground/2.

http://docs.wxwidgets.org/2.8.12/wx_wxwindowdc.html#wxwindowdc

If you are curious, you can query the defaults for your system with the functions in the

wxSystemSettings module. The wxWidgets documentation for the class has more, and

understandable information.

Drawing Lines
We can obviously draw lines. Let's give it a try:

11> wxDC:drawLine(DC, {50,70}, {150,70}).
ok

Lines are drawn using pens, instances of wxPen. The line we just drew will have been drawn with

the default pen. We can use a pen to our liking by setting it as the pen in the DC:

7> Pen = wxPen:new({255,0,0}, [{width, 3}, {style, 104}]).
{wx_ref,37,wxPen,[]}
8> wxDC:setPen(DC, Pen).
ok
9> wxDC:drawLine(DC, {50,80}, {150,80}).
ok

The wx documentation tells us how to construct one:

new(Colour, Options::[Option]) -> wxPen()
Colour = wx:wx_colour()
Option = {width, integer()} | {style, integer()}

The possible values for style are indicated in the wxWidgets documentation:

wxSOLID Solid style.
wxTRANSPARENT No pen is used.
wxDOT Dotted style.
wxLONG_DASH Long dashed style.
wxSHORT_DASH Short dashed style.
wxDOT_DASH Dot and dash style.
wxSTIPPLE Use the stipple bitmap.
wxUSER_DASH Use the user dashes: see wxPen::SetDashes.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.

http://docs.wxwidgets.org/2.8.12/wx_wxpen.html#wxpen
http://erlang.org/doc/man/wxPen.html#new-2
http://docs.wxwidgets.org/3.0/classwx_system_settings.html

As we saw in Getting Started, these constants are defined in macros in the wx.hrl file of your

Erlang distribution, and 104 corresponds to wxDOT_DASH.

Do heed the warning that accompanies these definitions:

Different versions of Windows and different versions of other platforms support very different
subsets of the styles above - there is no similarity even between Windows95 and Windows98 - so
handle with care.

Drawing Shapes
We can draw shapes, such as rectangles. Here's one:

10> wxDC:drawRectangle(DC, {50,90,100,20}).
ok

The pen is still the one we had set.

Whereas lines are drawn with a pen, shapes are filled with a brush, an instance of wxBrush. The

rectangle we just drew got filled with the default brush. We can construct brush to our liking, and
use that instead:

11> Brush = wxBrush:new({0,0,255}, [{style, 112}]),
11> wxDC:setBrush(DC, Brush),
11> wxDC:drawRectangle(DC, {200,50,100,20}).
ok

From the wx documentation, brushes can be constructed thus:

new(Colour) -> wxBrush()
Colour = wx:wx_colour()

new(StippleBitmap) -> wxBrush() when
StippleBitmap::wxBitmap:wxBitmap().

new(Colour, Options::[Option]) -> wxBrush()
Colour = wx:wx_colour()
Option = {style, integer()}

http://erlang.org/doc/man/wxBrush.html#new-0%23new-0

The style, according to the wxWidgets documentation, can be one of the constants:

wxTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxSTIPPLE Uses a bitmap as a stipple.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.

We used wxCROSSDIAG_HATCH (112).

Note the style wxTRANSPARENT (106). It means no fill. Not to be confused with the alpha channel

of colours. We haven't referred to the Mac platform so far, but it does have support for alpha
channel, unlike Windows, or Linux. We'll see later that the alpha channel, aka transparency, is
supported for bitmaps, but not for pens and brushes.

Clipping and Logical Functions
When drawing, it's important to be aware of two things: clipping and logical functions.

Clipping means confining any drawing action to a region, a subset of the entire drawing surface.
The simplest region is a rectangle, but it can be a union of any of number of shapes. If we set the
clipping region of a device context, any drawing will be limited to that region.

A logical function, on the other hand, defines how the pixels we draw, do actually get drawn, taking
into consideration what is already drawn. Assuming src to be the pixel we want to draw and dest the
pixel already drawn in the device context, the available logical functions and what they do is
documented in the wxWidgets documentation:

wxAND src AND dst
wxAND_INVERT (NOT src) AND dst
wxAND_REVERSE src AND (NOT dst)
wxCLEAR 0
wxCOPY src
wxEQUIV (NOT src) XOR dst
wxINVERT NOT dst
wxNAND (NOT src) OR (NOT dst)
wxNOR (NOT src) AND (NOT dst)
wxNO_OP dst
wxOR src OR dst
wxOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
wxSET 1
wxSRC_INVERT NOT src
wxXOR src XOR dst

The default is wxCOPY (5) and what it does is to paint the source pixel, without taking into

consideration what was already drawn. wxINVERT (2) doesn't take into consideration the source and

just toggles what was present: black to white and white to black, etc. wxXOR (1) is generally used to

http://docs.wxwidgets.org/2.8.12/wx_wxdc.html#wxdcsetlogicalfunction
http://docs.wxwidgets.org/2.8.12/wx_wxbrush.html#wxbrush

combine the source and destination pixels in such a way that drawing the source once again gives
you back what was originally there.

Let's try these concepts. We'll set a clipping rectangle, set the pen to a solid black line, 1 pixel wide,
and set the brush to a solid yellow. Then we'll draw a big square using the logical function

wxINVERT (2). We will see just the clipping reagion painted with all colours inverted.

12> wxDC:setClippingRegion(DC, {70, 30, 30, 100}),
12> wxDC:setLogicalFunction(DC, 2), %% 2 = wxINVERT
12> YellowBrush = wxBrush:new({255,255,0}, [{style,100}]), %% 100 = wxSOLID
12> wxDC:setBrush(DC, YellowBrush),
12> wxDC:drawRectangle(DC, {0,0,200,200}).
ok

The black rectangle is the clipping region. The things already drawn there have inverted colours. If
we draw the square again, the original drawing will be restored.

If, on the other hand, we try with the logical function wxXOR (1), we should get:

Remember, our brush is yellow! In this case too, drawing the square again should restore the
original drawing.

Finally, just to demonstrate that we are not cheating, we set the logical function back to the default,

i.e. wxCOPY (5) and draw the square again:

And this time around, we get the clipping region painted yellow, as expected.

Paint Event
One word of caution. If the window is hidden or minimized or is not "shown", nothing will
actually get drawn! It is ok if the window is not visible because it is behind other windows, but not
otherwise. wxWidgets takes the load off you to determine when things need to be redrawn. e.g. after

you un-minimize a window; it triggers a wxPaint event. The event is handled by widgets

internally to get their stuff done, but you can subscribe to it and wxWidgets will then leave the
handling to you so you can redraw your stuff on your own.

The lesson here is that drawing things in wxWidgets is not a draw-and-forget affair. You must be
prepared to redo what has already been done!

To demonstrate this, try enlarging the frame. Our drawing should not be effected. Now try reducing
the size so that the frame is smaller than the drawing.

When you enlarge it again, the part that had got covered by the frame will no longer be there:

Even worse, if you minimize the frame and then un-minimize it, the drawing will be lost.

So, how do we deal with this? Well, we must keep track of what we draw and redraw it whenever
the paint event is triggered. To see when that happens, let's subscribe to the event and in the handler

just print out the fact that the event had been delivered. We'll need to do this in a wx_object.

init([]) ->
 wx:new(),
 Frame = wxFrame:new(wx:null(), ?wxID_ANY, "paint event capture"),
 wxFrame:connect(Frame, paint), %% subscribing to the paint event
 wxFrame:show(Frame),
 {Frame, #{frame => Frame}}.

handle_event(#wx{} = Event, State) ->
 io:format("got ~p~n", [Event]),
 {noreply, State}.

If we compile1 and run it, we immediately get a paint event:

got {wx,-2007,{wx_ref,41,wxFrame,[]},[],{wxPaint,paint}}

This comes from wxFrame:show(Frame).

Now move the frame around. As long as the entire frame is visible, we should get no events.

Now move the frame out of the screen so that a part of it is not visible. We still shouldn't get any
paint event.

Now move the frame back to the screen. We should get some paint events.

Now minimize the frame. Again, no events.

Un-minimize it. Yes, we get paint events alright.

Resize the frame. We should get paint events when we enlarge the window, but not when we make
it smaller.

Most of the times you don't really need to repaint if the window is made smaller or a part of it gets
hidden becuse you don't really care. However, if we want to keep the entire window content visible
no matter what size the window is, this strategy is not applicable. Our chessboard will be one such
example. If we are playing the game, we need to see the entire board all the time.

1 drawing/ paint_event_capture .erl

https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/paint_event_capture.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/paint_event_capture.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/paint_event_capture.erl

There are at least two ways to deal with the resizing issue. One2 is to set the frame style to full
repaint on resize:

Frame = wxFrame:new(wx:null(), ?wxID_ANY, "paint event capture",
[{style, ?wxDEFAULT_FRAME_STYLE bor ?wxFULL_REPAINT_ON_RESIZE}]),

This instructs the frame to do a full repaint of the window whenever it is resized.

Size Event
The other way3 is to intercept the size event, wxSize, which gets generated every time the window

is resized, and force the generation of a paint event by means of wxWindow:refresh/1:

handle_event(#wx{event = #wxSize{}}, State = #{frame := Frame}) ->
 wxWindow:refresh(Frame),
 {noreply, State};

Event Chaining
A word of caution, though. You have to be extra careful when handling size events because they are
one of a class of events that are chained. When a window handles the size event, it passes it on to
all of its contained windows after doing whatever it needs to do. If we handle the event ourselves,
we break that chaining. This could be exactly what we want, but if it is not, we have to pass the

event on by using the skip option when subscribing to the event.

wxFrame:connect(Frame, size, [{skip, true}])

Here's a small experiment to demonstrate event chaining. We create4 a wx_object with a frame

and three buttons placed in a vertical box sizer with instructions to expand them to the size of the
frame.

 MkButton = fun(TheFrame, TheSizer, TheLabel) ->
 B = wxButton:new(TheFrame, ?wxID_ANY, [{label, TheLabel}]),
 wxSizer:add(TheSizer, B, [{flag, ?wxEXPAND}])

 end,
 [MkButton(Frame, Sizer, L) || L <- ["One", "Two", "Three"]],

An aside. When we add a widget to a sizer, it returns a wxSizerItem object which contains

information about the widget in the sizer. According to wxWidget documentation:

The wxSizerItem class is used to track the position, size and other attributes of each item managed
by a wxSizer.

Back to our expirement, we subscribe to the size event without the skip option and do nothing in the
size event handler.

Next, we make our widget handle a resize message, increasing its width by a 100 pixels:

handle_info(resize, State = #{frame := Frame}) ->
 {W, _} = wxFrame:getSize(Frame),
 wxFrame:setSize(Frame, W + 100, -1),
 {noreply, State};

2 drawing/ paint_event_capture_full_repaint .erl
3 drawing/ force_paint_by_size_capture .erl
4 drawing/ resize_no_skip .erl

http://docs.wxwidgets.org/2.8.12/wx_wxsizeritem.html#wxsizeritem
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/resize_no_skip.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/resize_no_skip.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/resize_no_skip.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/force_paint_by_size_capture.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/force_paint_by_size_capture.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/force_paint_by_size_capture.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/paint_event_capture_full_repaint.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/paint_event_capture_full_repaint.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/paint_event_capture_full_repaint.erl

Tip: in wxWidgets, if you don't want to change the value of a parameter, such as the height in this
case, you just specify it as -1. In the example above, the height of the frame will remain unchanged.

Now we are set. If we start the wx_object, we'll get a frame similar to:

If we now send the window the resize message, the width of the frame is increased by a 100

pixels, but the buttons remain where they were even though we had instructed the sizer to expand
the buttons.

The reason is that we blocked the size message from propagating to the frame's children. If, instead,
we specify the skip option in the subscription to the event5:

wxFrame:connect(Frame, size, [{skip, true}]),

the resize message will have the desired effect: all the buttons will resize to fit the frame:

Synchronous Event Handling
Since we'll be dealing with the paint event, let's have a look at the wxWidgets documentation for it.
We notice there is a remark:

Note that in a paint event handler, the application must always create a wxPaintDC object, even if
you do not use it. Otherwise, under MS Windows, refreshing for this and other windows will go
wrong.

Oh well! This is quite a warning. It actually puts a strong constraint on how to handle paint events.

Since, as we saw earlier, a wxPaintDC can only be created from within a callback, this rules out

5 drawing/ resize_and_skip .erl

http://docs.wxwidgets.org/2.8.12/wx_wxpaintevent.html#wxpaintevent
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/resize_and_skip.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/resize_and_skip.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/resize_and_skip.erl

handling the paint event as an event, with the added concern, as we saw in Getting Started, that we

then do not have access to the wx_object state.

Before despairing, let's go back to the wx documentation and have another look at the

wxEvtHandler:connect/3 specification:

connect(This::wxEvtHandler(), EventType::wxEventType(), Options::[Option]) -> ok
Option = {id, integer()} | {lastId, integer()} | {skip, boolean()} | callback | {callback,

function()} | {userData, term()}

Here we see that it also accepts a callback option, without any associated function. Now what

could that mean? Turns out it is actually an undocumented feature. It converts wxWidget's event

callback to an event that must be handled synchronously within wx_object. With

handle_sync_event/3, to be precise.

We can run a small experiment to verify this. We subscribe to an event in a wx_object specifying

the callback option, without the callback function. When we start the wx_object and generate

the event we subscribed to, there will be no handler for it and the wx_object will crash with a

printout of what it expected.

So, for example, if we subscribe the frame of our wx_object to the paint event in this way6, we

will see the the following crash report:

2>
=ERROR REPORT==== 11-Jan-2018::19:17:27 ===
wxe_server:288: Callback fun crashed with {'EXIT, undef, [{unhandled_callback,
 handle_sync_event,
 [{wx,-2006,
 {wx_ref,35,
 wxFrame,[]},
 [],
 {wxPaint,paint}},
 {wx_ref,39,
 wxPaintEvent,[]},

 #{frame =>
 {wx_ref,35,
 wxFrame,[]}}],

...

In other words, the wxe_server tried to invoke the callback handle_sync_event with three

arguments: the wx record, a reference to the paint event and the wx_object state.

We see no mention of this in the wx documentation, but if we inspect the code for canvas in
wx:demo/0, we will see that this function is indeed employed.

In the next section we will use full_repaint_on_resize style for the frame and handle the

paint event with a synchronous event handler in which we will be able to construct a wxPaintDC to

do the job.

Images and Bitmaps
We have learnt how to draw shapes and lines, but we still need to see how to deal with images.

6 drawing/ unhandled_callback .erl

https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/unhandled_callback.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/unhandled_callback.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/drawing/unhandled_callback.erl
http://erlang.org/doc/man/wxEvtHandler.html#connect-3

The DCs in wxWidgets don't deal with images directly, but through bitmaps. Bitmaps are created in
memory by specifying their size:

wxBitmap:new(Width, Height).

Or they can be loaded from images in files, as long as a handler for the image format is installed in
wxWidgets. The ususal suspects are probably installed in your distribution.

wxBitmap:new(ImageFilename).

There are other ways too, like creating the bitmap from a bitstring or a wxImage object, but we'll

just stick to these variants.

Once loaded, or ready, the bitmap can be drawn on to a DC with the wxDC:drawBitmap/3,4 or

the wxDC:blit/5,6 functions.

When we create the bitmap, it is just some area in memory with random pixels, unless we created it
out of an image on file. As with any other drawing, drawing on bitmaps requires a DC, the

wxMemoryDC. You either create the DC using the bitmap you want to work on:

wxMemoryDC:new(wxBitmap()) -> wxMemoryDC()

Or you select the bitmap into it:

wxMemoryDC:selectObject(wxMemoryDC(), wxBitmap()) -> ok

You then use the DC as any other DC and when you are done, you destroy it to get back your
painted bitmap.

Here are some extracts from the wxWidgets documentation on wxMemoryDC:

A memory device context provides a means to draw graphics onto a bitmap.

A bitmap must be selected into the new memory DC before it may be used for anything.

And here's an experiment in which we use the Erlang logo from our Erlang distribution:

1> wx:new(),
1> Frame = wxFrame:new(wx:null(), -1, "bitmaps"),
1> wxFrame:show(Frame).
true
2> Logo = wxBitmap:new(

filename:join(code:lib_dir(wx,priv), "erlang-logo64.png")).
{wx_ref,36,wxBitmap,[]}
3> CDC = wxClientDC:new(Frame).
{wx_ref,37,wxClientDC,[]}
4> wxDC:drawBitmap(CDC, Logo, {10,10}).
ok

http://docs.wxwidgets.org/2.8.12/wx_wxmemorydc.html#wxmemorydc
http://erlang.org/doc/man/wxMemoryDC.html#selectObject-2
http://erlang.org/doc/man/wxMemoryDC.html#new-1

5> Bitmap = wxBitmap:new(wxBitmap:getWidth(Logo)+40, wxBitmap:getHeight(Logo)
+40).
{wx_ref,38,wxBitmap,[]}
6> MDC = wxMemoryDC:new(Bitmap).
{wx_ref,39,wxMemoryDC,[]}
7> wxDC:setBackground(MDC, wxBrush:new({10,10,10})),
7> wxDC:clear(MDC).
ok
8> wxDC:drawBitmap(MDC, Logo, {20,20}).
ok
9> Heart = fun(DC, X,Y) ->
9> wxDC:drawLines(DC, [{X,Y},{X-20,Y+30}, {X-40,Y}]),
9> wxDC:setBrush(DC, wxBrush:new({255,0,0})),
9> wxDC:drawArc(DC, {X,Y}, {X-20,Y}, {X-10,Y}),
9> wxDC:drawArc(DC, {X-20,Y}, {X-40,Y}, {X-30,Y}),
9> wxDC:floodFill(DC, {X-20, Y+10}, {0,0,0}, [{style, 2}])
9> end.
#Fun<erl_eval.18.99386804>
10> Heart(MDC, wxBitmap:getWidth(Bitmap) - 5, 15).
true
11> wxMemoryDC:destroy(MDC).
ok
12> wxDC:drawBitmap(CDC, Bitmap, {150,10}).
ok

We drew a heart onto the bitmap using the wxDC:drawLines, wxDC:drawArc and

wxDC:floodFill functions.

We can save the bitmap to file:

14> wxBitmap:saveFile(Bitmap,"love_erlang.png", 15).
true

The 15 there is the value for the constant wxBITMAP_TYPE_PNG. If we go look in our directory, we
should see the file love_erlang.png:

As an exercise, think of a way to draw the heart without getting that horizontal black line.

Clipboard
We could also copy the image to the clipboard. The wxWidgets documentation gives us some hints

on how to do that using the wxClipboard:

A class for manipulating the clipboard. [snip]

To use the clipboard, you call member functions of the global wxTheClipboard object.

See also the wxDataObject overview for further information.

Call wxClipboard::Open to get ownership of the clipboard. If this operation returns true, you now
own the clipboard. Call wxClipboard::SetData to put data on the clipboard, or
wxClipboard::GetData to retrieve data from the clipboard. Call wxClipboard::Close to close the
clipboard and relinquish ownership. You should keep the clipboard open only momentarily.

In wxErlang, the way to access the global wxTheClipboard is wxClipboard:get/0. Here's how

we could copy our bitmap to the clipboard:

TheClipboard = wxClipboard:get(),
ClipboardBitmap = wxBitmapDataObject:new({bitmap, Bitmap})
true = wxClipboard:open(TheClipboard),
true = wxClipboard:setData(TheClipboard,ClipboardBitmap),
ok = wxClipboard:close(TheClipboard).

Providing Art
Yet another interesting capability is retrieving custom or system-provided art, such as icons or

bitmaps. The wxArtProvider class is used for this.

According to the wxWidgets documentation:

wxArtProvider class is used to customize the look of wxWidgets application. When wxWidgets
needs to display an icon or a bitmap (e.g. in the standard file dialog), it does not use a hard-coded
resource but asks wxArtProvider for it instead. This way users can plug in their own
wxArtProvider class and easily replace standard art with their own version. All that is needed is to
derive a class from wxArtProvider, override its CreateBitmap method and register the provider
with wxArtProvider::Push:

There's another way of taking advantage of this class: you can use it in your code and use platform
native icons as provided by wxArtProvider::GetBitmap or wxArtProvider::GetIcon

Every bitmap is known to wxArtProvider under an unique ID that is used when requesting a
resource from it. The ID is represented by wxArtID type and can have one of these predefined
values (you can see bitmaps represented by these constants in the artprov sample):

wxART_ADD_BOOKMARK
wxART_DEL_BOOKMARK
wxART_HELP_SIDE_PANEL
wxART_HELP_SETTINGS
wxART_HELP_BOOK
wxART_HELP_FOLDER
wxART_HELP_PAGE
wxART_GO_BACK
wxART_GO_FORWARD
wxART_GO_UP

http://docs.wxwidgets.org/2.8.12/wx_wxartprovider.html#wxartprovider
http://docs.wxwidgets.org/2.8.12/wx_wxclipboard.html#wxclipboard

wxART_GO_DOWN
wxART_GO_TO_PARENT
wxART_GO_HOME
wxART_FILE_OPEN
wxART_PRINT
wxART_HELP
wxART_TIP
wxART_REPORT_VIEW
wxART_LIST_VIEW
wxART_NEW_DIR
wxART_FOLDER
wxART_GO_DIR_UP
wxART_EXECUTABLE_FILE
wxART_NORMAL_FILE
wxART_TICK_MARK
wxART_CROSS_MARK
wxART_ERROR
wxART_QUESTION
wxART_WARNING
wxART_INFORMATION
wxART_MISSING_IMAGE

Additionally, any string recognized by custom art providers registered using Push may be used.

Here's how we could draw the native bitmap for an error icon, scaled to 100x100 pixels, onto our

Frame:

DC = wxClientDC:new(Frame),
ErrorBmp = wxArtProvider:getBitmap("wxART_ERROR", [{size, {100,100}}]),
wxDC:drawBitmap(DC, ErrorBmp, {0,0}),
wxBitmap:destroy(ErrorBmp),
wxClientDC:destroy(DC).

Transparency
Talking of bitmaps, it's important to note that transparency is supported, even though not for pens or
brushes. We can demonstrate this with a little experiment in which we draw a white rectangle
(default brush), then a red rectangle using a brush with an alpha channel, and finally a green, semi-
transparent rectangle, generated by an external program such as Inkscape, and stored in a file:

29> DC = wxClientDC:new(Frame),
29> wxDC:drawRectangle(DC, {10,10,100,100}),
29> wxDC:setBrush(DC, wxBrush:new({255,0,0,125})), %% red with alpha
29> wxDC:drawRectangle(DC, {50,50,100,100}),
29> BM = wxBitmap:new("semitransparent.png"),
29> wxDC:drawBitmap(DC, BM, {80,80}).
ok

As we can see, the red rectangle, despite the 50% transparency of the brush, is painted opaque,
whereas the green rectangle is painted 50% transparent because that's how it was generated.

We'll take another look at transparency in a later chapter.

Let's now move on to using some of the concepts we've learnt here to construct a chessboard for our
chess players.

Chessboard
In this chapter we will develop a chessboard for our chess players, so they can put the chess clock to
good use. A chessboard is made up of sixty four alternating black and white squares laid out in eight
files (columns) and eight ranks (rows). The bottom-left square is black. There are thirty two pieces;
sixteen black and sixteen white. For each colour, there are eight pawns, two rooks, two knights, two
bishops, one queen and one king.

The game starts with the white pieces all lined up in ranks one and two and the black pieces in ranks
seven and eight. Each player takes a turn at moving a piece. White moves first. There are several
rules that determine which moves are legitimate and which are not. The goal is to capture the
oponent's king. The one who is able to do so, wins. If it is impossible for both players to capture the
other's king, no one wins and a draw is declared.

The games can take a very long time, with each player trying to figure out the best move. A variant
of the game limits the allowed amount of time. That's where the chess clock is used. The type we
constructed in Geting Started.

We'll start with drawing the chessboard with all the pieces placed on it in the starting position.

We need a square drawing surface, which we'll divide into 64 squares, 8 rows by 8 columns. We'll
allow the user to resize it, but we'll put a constraint that the size of the board be such that the size of

the 64 squares is always an even number of pixels. So for a panel W pixels by H pixels, the size of

the 64 squares will be ((min(W, H) div 8) div 2) * 2 pixels.

square_size(W,H) -> ((min(W,H) div 8) div 2) * 2 end.

For a panel 500x430 that gives us ((min(500,430) div 8) div 2) * 2 = 52 pixels.

In the chess game, the ranks are numbered 1 to 8 starting from the bottom most, if drawn on a
vertical surface, and the files A to H starting from the left most. An algebric convention is employed
to name the squares by their file and rank. For computing, it is easier to deal with zero-based
indexes, so we'll name the squares with a tuple of integers, {0,0} for the top-left square (A8), and
{7,7} for the bottom-right square (H1).

We can define two functions to do the mappings, if needed:

to_internal([File, Rank]) -> {File - $A, $8 - Rank} end.
from_internal({Column, Row}) -> [Column + $A, $8 - Row] end.

So, to_internal("A2") = {0,6} and from_internal({0,6}) = "A2".

We'll need to determine the rectangle to draw for each square:

rectangle({Column,Row}, SquareSize) ->
{Column * SquareSize, Row * SquareSize, SquareSize, SquareSize} end.

We'll need to know whether the square is black or white:

square_colour({Column,Row}) ->
case (Column+Row) div 2 of 0 -> white; _ -> black end end.

We'll need a brush to paint the white squares:

White = {140,220,120},
WhiteBrush = wxBrush:new(White),

And of course one to paint the black squares:

Black = {80,160,60},
BlackBrush = wxBrush:new(Black),

Note that the squares don't have to be white and black, just a light shade and a dark shade.

We'll need to either draw the pieces with lines and shapes or use bitmaps, which, as we saw in the
previous chapter, we can generate from images stored in files. I have used Inkscape to generate
PNG images of all the white and black pieces, and if you don't want to make your own pieces, you
can downlaod7 them.

No support for user-provide Art
We could push these images to the wxArtProvider and then use them in drawing the chessboard,

but unfortunately wxErlang does not support that. So we have to deal with the images oursleves.

wxImage
However, there is one difficulty with bitmaps. Since we will be allowing the user to resize the
chessboard, the bitmaps will have to adapt to the board's dimensions. There is no function in the

wxBitmap module that will allow us to do that. Nevertheless, wxWidgets does provide the

wxImage abstraction. It allows us to read images off files, and also has functions to scale and

manipulate those image.

So, we will load all the piece images into wxImage objects, scale them to the appropriate size and

cache them so that we can create the bitmaps when needed. We'll use a map for the cache and index

it with the tuple {piece_colour, piece_role}:

load_images() ->
 ImageFileNames = #{
 {black, rook} => "black_rook.png",
 {black, knight} => "black_knight.png",
 {black, bishop} => "black_bishop.png",
 {black, queen} => "black_queen.png",
 {black, king} => "black_king.png",
 {black, pawn} => "black_pawn.png",
 {white, rook} => "white_rook.png",
 {white, knight} => "white_knight.png",
 {white, bishop} => "white_bishop.png",
 {white, queen} => "white_queen.png",
 {white, king} => "white_king.png",
 {white, pawn} => "white_pawn.png"},
 maps:map(fun(_K,V) -> wxImage:new(

 filename:join("../images", V),
 [{type, ?wxBITMAP_TYPE_PNG}]) end,

 ImageFileNames).

7 images/

http://docs.wxwidgets.org/2.8.12/wx_wxartprovider.html#wxartproviderpush
https://github.com/arifishaq/wxerlang/tree/master/images

Since wxImage and wxBitmap, just like wxDCs, are C++ objects that are not garbage collected, we

need to make sure we remove them with the appropriate destroy functions, once we are done, to

avoid memory leaks.

[wxImage:destroy(I) || I <- maps:values(Images)],

Finally, we need to know the layout: what piece is placed in which square, when drawing the chess
board. This, too, we'll keep in a map, keyed on the square name. Before starting the game, we'll
initialize this map so that it reflects the starting position of all the pieces:

init_board() ->
 Columns = lists:seq(0,7),
 BlackPieces = [{black,rook}, {black,knight}, {black,bishop}, {black,queen},

 {black,king}, {black,bishop}, {black,knight}, {black,rook}],
 WhitePieces = [{white,rook}, {white,knight}, {white,bishop}, {white,queen},

 {white,king}, {white,bishop}, {white,knight}, {white,rook}],
 Row1 = [{{C,1}, {white,pawn}} || C <- Columns],
 Row6 = [{{C,6}, {black,pawn}} || C <- Columns],
 Row0 = [{{C,0}, lists:nth(C+1, WhitePieces)} || C <- Columns],
 Row7 = [{{C,7}, lists:nth(C+1, BlackPieces)} || C <- Columns],

 maps:from_list(Row0 ++ Row1 ++ Row6 ++ Row7).

We'll subscribe to the paint event and draw the board in the paint event handler. As we said in the

previous section, we will handle the paint event in a callback because Windows requires it. We'll
draw a piece only if we see from the layout that there's one on the square:

paint_board(#{panel := Panel,
 layout := Layout,
 image_map := ImageMap,
 white_brush := WhiteBrush,
 black_brush := BlackBrush}) ->

 {W,H} = wxPanel:getSize(Panel),
 SquareSize = square_size(W,H),

 PaintSquare =
fun(DC,C,R) ->

Brush = case square_colour(C,R) of
 black -> BlackBrush;
 white -> WhiteBrush

end,
Rectangle = rectangle(C,R,SquareSize),
wxDC:setBrush(DC,Brush),
wxDC:drawRectangle(DC, Rectangle),

case maps:get({C,R}, Layout, none) of
 none -> ok;
 Piece ->

{X,Y,SW,SH} = Rectangle,
Image = wxImage:scale(maps:get(Piece, ImageMap),SW,SH),
PieceBitmap = wxBitmap:new(Image),
wxDC:drawBitmap(DC, PieceBitmap, {X,Y}),
wxImage:destroy(Image),
wxBitmap:destroy(PieceBitmap)

end
end,

 DC = wxPaintDC:new(Panel),
 wxDC:setPen(DC, ?wxTRANSPARENT_PEN),
 Seq0to7 = lists:seq(0,7),

 [PaintSquare(DC,C,R) || R <- Seq0to7, C <- Seq0to7],
 wxPaintDC:destroy(DC).

We created a scaled copy of the piece image, and then created a bitmap from it.

Let's put all these bits together into a module8, compile it and run it (making sure the image files are

in the directory ../images) :

8> c(drawn_board).
{ok,drawn_board}
9> drawn_board:start_link().
{wx_ref,37,wxPanel,<0.123.0>}

Huh? We just get an empty frame, no board.

If we try to resize it, though, the board, with all the pieces set in their starting position does get
drawn:

You may want to take a peek at the code, to notice that we have:

• employed the style FULL_REPAINT_ON_RESIZE for the frame,

• subscribed to the paint event with option callback,

• handled the paint event in the synchronous event handler,

• painted the board with a wxPaintDC.

Not too bad for starters.

So why did we have to resize the board? To be honest, I don't know, and have not investigated

much. I traced the paint event triggering and saw it wasn't triggered by the wxFrame:show.

8 chessboard/ drawn_board.erl

https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/drawn_board.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/drawn_board.erl

However, we can force its generation if we add a wxWindow:refresh/1 right after

wxFrame:show. It's commented out in the module we just compiled, so you can verify this by

removing the comment sign and recompiling.

Do you notice any flicker or flashing when resizing the board? We'll have more to say on that soon.

Mouse Events
Next, let's see how to move the pieces. We'll do it in two steps. We'll click on a piece to select it.
Then we'll clik on the square where we want to drop the piece to drop it there.

To capture the click, we need to subscribe to some event that gets generated when we the mouse is

clicked. We see in the wx documentation that there is an event called wxMouseEvent:

Use wxEvtHandler:connect/3 with EventType:
 left_down, left_up, middle_down, middle_up, right_down, right_up, motion, enter_window,
 leave_window, left_dclick, middle_dclick, right_dclick, mousewheel

So we subscribe to left_down.

wxPanel:connect(Panel, left_down),

In the event handler, we will get a wxMouse event which contains the coordinates of where the

mouse was clicked. With those coordinates, we should be able to determine which square it was and
select it if it contains a piece that can be moved.

where(X,Y,Panel) ->
{W,H} = wxPanel:getSize(Panel),
SquareSize = square_size(W,H),
{X div SquareSize, Y div SquareSize}.

where/3 will tell us the coordinates as {Column, Row}.

Now this is just a click, we don't really know whether it is a click to select a piece to move it, or it is
a click to drop a selected piece. This requires some intelligence, which we may want to delegate to
some other process.

To provide a visual feedback that a piece has been selected, we could set the background of the

square to a different colour, eg {238,232,170}. When we drop the piece in some other square, we

will remove the piece from the selected square and resotre its colour.

We will also substitute any piece there may have been at the dropped square. This means that we
need to remember which square is selected in the board's state, and the paint handler has to take this
into account as well. Instead of painting the single squares, we genereate a paint event with

wxWindow:refresh/1 and let the paint handler handle it.

So, the state is changed to:

 #{frame => Frame,
 panel => Panel,
 layout => init_board(),
 image_map => load_images(),
 white_brush => wxBrush:new(White),
 black_brush => wxBrush:new(Black),

http://erlang.org/doc/html/wxMouseEvent.html

 selected_brush => wxBrush:new({238,232,170}),
 selected => none}

We handle the mouse event with the assumption that when there is a click with nothing selected, we
are selecting a piece, and that when something is already selected, we are dropping it.

handle_event(#wx{event=#wxMouse{leftDown=true,x=X,y=Y}},
 State = #{panel := Panel,

 layout := Layout,
 selected := none}) -> %% selecting a piece

 {C,R} = where(X,Y,Panel),
 case maps:get({C,R}, Layout, none) of

none ->
{noreply, State};

_ ->
wxPanel:refresh(Panel),

 {noreply, State#{selected => {C,R}}}
 end;

handle_event(#wx{event=#wxMouse{leftDown=true,x=X,y=Y}},
 State = #{panel := Panel,

 layout := Layout,
 selected := Selected}) -> %% dropping a selected piece

 {C,R} = where(X,Y,Panel),
 Piece = maps:get(Selected, Layout),
 NewLayout = maps:put({C,R}, Piece, maps:remove(Selected, Layout)),
 wxPanel:refresh(Panel),
 {noreply, State#{layout => NewLayout, selected => none}};

We will need to modify the paint_board function to use the selectedBrush if the square to be

drawn is the one selected:

Brush = case Selected of
 {C,R} ->

SelectedBrush;
 _ ->

case square_colour(C,R) of
 black -> BlackBrush;
 white -> WhiteBrush
 end

 end,

Recompile9 and run it. You should be able to select the pieces and drop them somewhere. There is
no enforcement of allowed moves, but from a GUI point of view, it works!

Flicker
Moving the pieces around causes some annoying flicker, more so under Windows than under Linux.
Hunting for information on flickering, you may bump into a page in the wiki of wxWidgets on
Flicker-free drawing. Among other things, it says:

Flicker free drawing can be achieved by a two step process.

1. Disable erase background event. When wxWidgets wants to update the display it emits two
events: an erase background event and a paint event. You must implement an empty method for the
erase background event (in other words: intercept the EVT_ERASE_BACKGROUND event and
dont call event.Skip()).

9 chessboard/move_piece .erl

https://wiki.wxwidgets.org/Flicker-Free_Drawing
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/move_piece.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/move_piece.erl

2. Use a double buffer. This means drawing to a bitmap instead of to the display. When drawing is
complete, you copy the bitmap to the display. Note that the bitmap must be the same size as the
window.

These two steps work together. If you only disabled the erase event, the display would contain
leftovers from the last paint event. Since you also use a bitmap that covers the entire window you
will automatically overwrite everything. If you only used a double buffer, you would still see a
flash because the window was updated twice: 1st by the erase event, 2nd by the paint event.

Looking into the wx documentation we see there is a wxErase event with event type

erase_background. So we'll subscribe to this event to intercept it and handle it as a synchronous

callback:

 wxPanel:connect(Panel, erase_background, [callback]),

Tha handling is simple. We just ignore the event!

handle_sync_event(#wx{event=#wxErase{}}, _, _) -> ok.

If we try10 it, we'll see that things are already a lot better. The rather annoying flash is gone in
Windows, but a certain flicker still remains.

Let's also try the second of the measures, that of painting onto a bitmap and then painting that onto
the frame. Actually, this is easily achieved by using a buffered DC:

This class provides a simple way to avoid flicker: when drawing on it, everything is in fact first
drawn on an in-memory buffer (a wxBitmap) and then copied to the screen, using the associated
wxDC, only once, when this object is destroyed. wxBufferedDC itself is typically associated with
wxClientDC, if you want to use it in your EVT_PAINT handler, you should look at
wxBufferedPaintDC instead.

And the documentation for wxBufferedPaintDC says:

This is a subclass of wxBufferedDC which can be used inside of an OnPaint() event handler.
Just create an object of this class instead of wxPaintDC and make sure
wxWindow::SetBackgroundStyle is called with wxBG_STYLE_CUSTOM somewhere in the class
initialization code, and that's all you have to do to (mostly) avoid flicker. The only thing to watch
out for is that if you are using this class together with wxScrolledWindow, you probably do not
want to call PrepareDC on it as it already does this internally for the real underlying wxPaintDC.

So, let's follow this advice by setting the background style of the panel to custom style:

 Panel = wxPanel:new(Frame,[{size, {320,320}},
 {style, ?wxFULL_REPAINT_ON_RESIZE}]),

 wxPanel:setBackgroundStyle(Panel, ?wxBG_STYLE_CUSTOM),

and then using wxBufferedPaintDC, instead of wxPaintDC:

 DC = wxBufferedPaintDC:new(Panel),
 wxDC:setPen(DC, ?wxTRANSPARENT_PEN),
 Seq0to7 = lists:seq(0,7),
 [PaintSquare(DC,C,R) || R <- Seq0to7, C <- Seq0to7],
 wxBufferedPaintDC:destroy(DC).

If we try11 this use of a buffered DC, we'll see the flicker is practically gone.

10 chessboard/no_erase .erl
11 chessboard/buffered_dc .erl

https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/buffered_dc.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/buffered_dc.erl
http://docs.wxwidgets.org/2.8.12/wx_wxbuffereddc.html
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/no_erase.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/no_erase.erl
http://erlang.org/doc/man/wxEraseEvent.html

However, if we resized the window several times, we could end up with something like:

This is not what we bargained for. The reason is that we are only painting a portion of the entire
panel. That extra space has "garbage" we need to get rid of.

One way is to paint it with the background colour of the board panel, which we keep in the state:

background_brush => wxBrush:new(wxPanel:getBackgroundColour(Panel)),

Then, within the paint_board function, where we already have the panel's size and the square

size:

{W,H} = wxPanel:getSize(Panel),
SquareSize = square_size(W,H),

we can paint the extra space clean:

 wxDC:setBrush(DC, BackgroundBrush),
 BoardSize = 8 * SquareSize,
 wxDC:drawRectangle(DC,{BoardSize,0,W-BoardSize,H}),
 wxDC:drawRectangle(DC, {0,BoardSize,BoardSize,H-BoardSize}),

Try it12. You will see it works.

The second, simpler way, is to erase the background before drawing.

 wxDC:setBackground(DC, BackgroundBrush),
 wxDC:clear(DC),

Try13 again. The result should be the same.

12 chessboard/flicker_free1 .erl
13 chessboard/flicker_free2 .erl

https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/flicker_free2.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/flicker_free2.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/flicker_free1.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/chessboard/flicker_free1.erl

Chessboard revisited
Let's see if we can somehow enforce that pieces can be moved only according to the rules of chess.

We need to identify which pieces have allowed moves - according to the rules - and, once selected,
which squares the selected piece can be moved to.

The player playing black is allowed to move only the black pieces, while the player playing white is
allowed to move only the white pieces. Obvious, but we need to keep track of whose turn it is to
move.

Cursors
From the GUI point of view, we'd like to be able to give a visual cue of which pieces can be moved
and which squares they can be moved to, once selected. My preference would be to change the
cursor into a hand shape on the eligible squares. So let's see how we can do that.

wxWidgets handles cursors by means of wxCurosr.

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a picture that
might indicate the interpretation of a mouse click. [snip]

A single cursor object may be used in many windows (any subwindow type). The wxWidgets
convention is to set the cursor for a window, as in X, rather than to set it globally as in MS
Windows, although a global ::wxSetCursor is also available for MS Windows use.

We already have a problem: cursors cannot change within parts of the window, our board's squares.
They can only be changed from one window to the other. Pity, our squares are not windows.

Grid Sizer
Hey, wait! What stops us from making them into windows, wx_objects in their own right?

There'll be too many of them? 64, to be precise, for just one board. Well, since when did an Erlanger
become afraid of too many processes? Let's get on with it and transform our board into a grid of 64
square widgets! Did we say grid? ok, a Grid S izer be it, then.

[wxGridSizer] is a sizer which lays out its children in a two-dimensional table with all table fields
having the same size, i.e. the width of each field is the width of the widest child, the height of each
field is the height of the tallest child.

We'll use a grid sizer with 8 rows and 8 columns and no space between them:

Sizer = wxGridSizer:new(8,8,0,0),

In each of those 64 squares we'll add a wx_object: chess_square. The square doesn't have to

know everything about the board, but it does need the following information:

• a reference to the panel, or frame, to use as the parent
• the board's pid, to be able to send it messages
• a brush to paint the square
• a brush to paint the square when it is selected

http://docs.wxwidgets.org/2.8.12/wx_wxgridsizer.html#wxgridsizer
http://docs.wxwidgets.org/2.8.12/wx_wxgridsizer.html#wxgridsizer
http://docs.wxwidgets.org/2.8.12/wx_wxgridsizer.html#wxgridsizer
http://docs.wxwidgets.org/2.8.12/wx_wxcursor.html#wxcursor
https://en.wikipedia.org/wiki/Rules_of_chess

• a flag to say if it is selected
• the image of any piece that is lying on it
• and though not needed now, we will also provide it with its location on the board

%% in chess_square.erl

start_link(Location, BoardPid, Parent, Brush, SelectedBrush) ->
 wx_object:start_link(
 ?MODULE, [Location, BoardPid, Parent, Brush, SelectedBrush], []).

init([Location, BoardPid, Parent, Brush, SelectedBrush]) ->
 Panel = wxPanel:new(Parent, [{style, ?wxFULL_REPAINT_ON_RESIZE}]),
 wxPanel:setBackgroundStyle(Panel, ?wxBG_STYLE_CUSTOM),
 wxPanel:connect(Panel, paint, [callback]),
 wxPanel:connect(Panel, erase_background, [callback]),
 State = #{
 location => Location,
 board_pid => BoardPid,
 square_panel => Panel,
 image => none,
 brush => Brush,
 selected_brush => SelectedBrush,
 selected => false},
 {Panel, State}.

When the square gets a paint event, we need to clear it with the background colour which is suitable
for the state of the square, and paint the piece, if there is one, onto it. We block the erase event to
suppress any flashing due to it.

handle_sync_event(#wx{event=#wxPaint{}}, State) ->
 paint_square(State);
handle_sync_event(#wx{event=#wxErase{}}, _, _) ->
 ok.

paint_square(#{square_panel := Panel,
 image := PieceImage,
 brush := Brush,
 selected_brush := SelectedBrush,
 selected := Selected}) ->

 Paint = fun (_DC, none) -> ok;
 (DC, Image) ->

 {W,H} = wxPanel:getSize(Panel),
 ScaledImage = wxImage:scale(Image,W,H),
 PieceBitmap = wxBitmap:new(ScaledImage),
 wxDC:drawBitmap(DC, PieceBitmap, {0,0}),
 wxImage:destroy(ScaledImage),
 wxBitmap:destroy(PieceBitmap)

 end,

 DC = wxBufferedPaintDC:new(Panel),
 wxDC:setPen(DC, ?wxTRANSPARENT_PEN),
 wxDC:setBackground(DC, case Selected of

 true -> SelectedBrush;
 false -> Brush
 end),

 wxDC:clear(DC),
 Paint(DC, PieceImage),
 wxBufferedPaintDC:destroy(DC).

Now that we have the square code14 done, we turn our attention to the construction of a board using

these squares. We'll do this in the module chess_board.

As we said, we are going to use an 8 x 8 Grid Sizer. We will create 64 square widgets and add them
to the sizer. We will keep a map of the square widgets and a map of their pids so we can easily
access any square we desire and communicate with it. The maps will be keyed on the square's

location on the board: {Column, Row}:

%% in chess_board.erl

SquaresList = [MkSquare(C,R) || R <- lists:seq(0,7), C <- lists:seq(0,7)],
SquareMap = maps:from_list(SquaresList),
SquarePidMap = maps:map(fun(_,V) -> wx_object:get_pid(V) end, SquareMap),

MkSquare/2 is a function, a closure, that we define in the board's init/1 function:

-define(SQUARE, chess_square).
-define(UTILS, chess_utils).
-define(WHITE, {140,220,120}).
-define(BLACK, {80,160,60}).
-define(SELECTED_COLOUR, {238,232,170}).

start_link() ->
 wx_object:start_link(?MODULE, [], []).

init([]) ->
 wx:new(),
 Frame = wxFrame:new(wx:null(), ?wxID_ANY, "chess_board"),
 MainSizer = wxBoxSizer:new(?wxVERTICAL),

 Board = wxPanel:new(Frame, [{style, ?wxFULL_REPAINT_ON_RESIZE}]),
 wxPanel:setBackgroundStyle(Board, ?wxBG_STYLE_CUSTOM),

 Grid = wxGridSizer:new(8,8,0,0),
 wxPanel:setSizer(Board, Grid),

 WhiteBrush = wxBrush:new(?WHITE),
 BlackBrush = wxBrush:new(?BLACK),
 SelectedBrush = wxBrush:new(?SELECTED_COLOUR),
 BackgroundBrush = wxBrush:new(wxPanel:getBackgroundColour(Board)),

 Layout = ?UTILS:init_board(),
 ImageMap = ?UTILS:load_images(),

 MkSquare =
fun(C,R) ->

SquareColour = ?UTILS:square_colour(C,R),
Brush = case SquareColour of

 white -> WhiteBrush;
 black -> BlackBrush
end,

Square = ?SQUARE:start_link(
 {C,R},
 self(),
 Board,
 Brush,
 SelectedBrush),

{{C,R}, Square}
end,

14 game 1/chess_square.erl

https://github.com/arifishaq/wxerlang/blob/master/speeding_up/game1/chess_square.erl
https://github.com/arifishaq/wxerlang/blob/master/speeding_up/game1/chess_square.erl

 SquaresList = [MkSquare(C,R) || R <- lists:seq(0,7), C <- lists:seq(0,7)],
 [wxSizer:add(Grid, Square, [{flag, ?wxEXPAND}])
 || {_,Square} <- SquaresList],

 SquareMap = maps:from_list(SquaresList),
 SquarePidMap = maps:map(fun(_,V) -> wx_object:get_pid(V) end, SquareMap),
 layout_pieces(Layout, ImageMap, SquarePidMap),

 wxSizer:add(MainSizer, Board, [{flag, ?wxEXPAND}, {proportion,1}]),
 wxFrame:setSizer(Frame, MainSizer),

 wxFrame:show(Frame),
 {W,H} = wxFrame:getClientSize(Frame),
 wxPanel:setSize(Board, W, H),
 wxWindow:refresh(Frame),

 State = #{frame => Frame,
 board => Board,
 layout => Layout,
 image_map => ImageMap,
 {white, brush} => WhiteBrush,
 {black, brush} => BlackBrush,
 selected_brush => SelectedBrush,
 background_brush => BackgroundBrush,
 square_map => SquareMap,
 square_pid__map => SquarePidMap,
 selected => none},

 {Frame, State}.

We've put the functions square_colour/2, init_board/0, load_images/0 in a separate

module chess_utils.

square_colour/2 returns the colour of the square (black or white), based on its location

(Column, Row).

Please note the sequence of column-row tuples and the sequence with which the widgets are added
to the grid. We are going to need to know this later.

We need to provide those squares that have a piece on them, the image of the placed piece. We do

this by sending the square the message {image, PieceImage}.

However, since we will also need to tell the squares whether they are selected or not, whether they

can be selected or not, and so on, we provide a utility function in the chess_square module to set

the value of such state variables:

handle_info({Property, Value}, State = #{square_panel := Panel}) ->
 wxWindow:refresh(Panel),
 {noreply, maps:put(Property, Value, State)};

If in setting such properties, the square appearance changes (for example when we change the
image of the piece on the square), we will also request the re-painting of the square by means of

wxWindow:refresh/1.

Using this utility function, here's how we provide the images of all the pieces:

layout_pieces(Layout, ImageMap, SquarePidMap) ->
 maps:fold(
 fun(Location,Piece,_) ->

 Image = maps:get(Piece, ImageMap),
 Pid = maps:get(Location, SquarePidMap),
 Pid ! {image, Image}

 end,
 [],
 Layout).

We go through the layout of the board and for each location that has a piece on it, we send the
square the relative piece image.

Note that we don't bother about painting the board itself as the single squares cover the entire board
surface.

It'd be a good idea to see if the board will get drawn as expected before going any further by

compiling15 all the files: chess_square, chess_board and chess_utils and running

chess_board:start_link/0.

It does! Just a slight flicker when we resize it. However, the board doesn't stay square. And we don't
have any constraints in the sizers that can enforce the board's squareness. We'll tackle this problem
later. For now let's move on.

Changing the Cursor
Let's see if we can now tell a square it can be selected (is selectable) and have the cursor change to a
hand when moved over it.

Here's a snippet from the wxWidgets documentation:

wxWindow::SetCursor

virtual void SetCursor(const wxCursor&cursor)

Sets the window's cursor. Notice that the window cursor also sets it for the children of the window
implicitly.

15 game1/

http://docs.wxwidgets.org/2.8.12/wx_wxwindow.html#wxwindowsetcursor
https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game1

The cursor may be wxNullCursor in which case the window cursor will be reset back to

default.

Parameters

cursor

Specifies the cursor that the window should normally display.

We'll use the boolean property selectable to indicate to the square if it can be selected or not.

Similarly, we'll use the property landable to indicate to the square if a piece is allowed to land on

it or not. We modify the property setting handler to modify the square's cursor when the property
being set is one of these two:

%% in chess_square.erl

handle_info({Property, Value}, State = #{square_panel := Panel})
 when Property =:= selectable; Property =:= landable ->
 case Value of

true ->
 wxWindow:setCursor(Panel, wxCursor:new(?wxCURSOR_HAND));
false ->
 wxWindow:setCursor(Panel, ?wxNullCursor)

 end,
 {noreply, maps:put(Property, Value, State)};

We are not going to implement the chess rules yet, but just for the sake of verifying that this works,

we'll allow the player to move the pieces of his colour. We'll send the board a message {play,

Colour} to indicate it should allow us to select the pieces of the said Colour.

%% in chess_board.erl

handle_info({play, Colour}, State = #{layout := Layout,
 square_pid_map := SquarePidMap}) ->

 maps:fold(
 fun(Location, {C, _}, _AccIn) when C =:= Colour ->

 maps:get(Location, SquarePidMap) ! {selectable, true}
 end,
 [], Layout),
 {noreply, State};

As in the previous section, we will subscribe to the mouse left click to actually select the piece on a
square and to then move it to another location. This time the click will be detected by the square and
not the board, so we will have the square inform the board that it has been clicked by means of the

message we_selected.

The board, in turn, will mark the selectable pieces as no longer selectable, and will mark those
squares where the selected piece can land as landable. Let's assume we allow the selected piece to
land on any empty square or on an opponent's piece. In order to do this, the board will need to know
the location, on the board, of the selected piece. So we let the square give this information inside the

we_slected message: {we_selected, Location}.

The following sequence diagram illustrates this:

%% in chess_square.erl

handle_event(#wx{event=#wxMouse{type = left_down}},
 State = #{square_panel := Panel,

 board_pid := BoardPid,
 selectable := true,
 selected := false,
 location := Location}) ->

 BoardPid ! {we_selected, Location},
 wxPanel:refresh(Panel),
 {noreply, State#{selected => true}};

handle_event(#wx{event=#wxMouse{type = left_down}}, State) ->
 {noreply, State};

The board, upon receiving this message will prepare the squares where the selected piece can land:

%% in chess_board.erl

handle_info({we_selected, SquareLocation},
 State = #{square_pid_map := SquarePidMap,

 layout := Layout}) ->
 {Colour, _} = maps:get(SquareLocation, Layout),
 maps:fold(
 fun(Location, {C, _}, _AccIn) when C =:= Colour ->

 maps:get(Location, SquarePidMap) ! {selectable, false};
 (_,_,_) ->
 maps:get(SquareLocation, SquarePidMap) ! {selectable, true}

 end,
 [], Layout),
 {noreply, State#{selected => SquareLocation}};

We should now have a piece selected and ready to move to some other location. That location is

where the player will click again, provided the square is landable. This time the square will tell

the board there was a move with the message {we_moved, Location}

%% in chess_square.erl

handle_event(#wx{event=#wxMouse{type = left_down}},

 State = #{board_pid := BoardPid,
 landable := true,
 location := Location}) ->

 BoardPid ! {we_moved, Location},
 {noreply, State};

The moving of a piece is a complicated affair. The board will need to:

• mark all the landable squares not landable any more

• mark the opponent's pieces as selectable for the next move

• mark the selected square as not selected any more

• record that no square is selected any more

• remove the image of the chess piece from the selected square

• set the image of the square the piece was moved to, to the image removed from the selected
square

%% in chess_board.erl
handle_info({we_moved, MovedToLocation},

 State = #{selected := FromLocation,
 square_pid_map := SquarePidMap,
 image_map := ImageMap,
 layout := Layout}) ->

 [Sq ! {landable, false} || Sq <- maps:values(SquarePidMap)],

 Piece = {Colour, _} = maps:get(FromLocation, Layout),
 Opponent = ?UTILS:opponent(Colour),

 maps:fold(
 fun(Location, {C, _}, _AccIn) when C =:= Opponent ->

 maps:get(Location, SquarePidMap) ! {selectable, true};
 (_,_,_) ->
 ok

 end,
 [], Layout),

 FromPid = maps:get(FromLocation, SquarePidMap),
 FromPid ! {selected, false},
 FromPid ! {image, none},
 PieceImage = maps:get(Piece, ImageMap),
 TargetPid = maps:get(MovedToLocation, SquarePidMap),
 TargetPid ! {image, PieceImage},

 {noreply, State#{selected => none,
 layout => (maps:remove(FromLocation, Layout))#{

 MovedToLocation => Piece}}};

It's time to try16 it all to make sure it works.

1> B = chess_board:start_link().
{wx_ref,35,wxFrame,<0.63.0>}
2> wx_object:get_pid(B) ! {play, white}.
{play,white}
3>

16 game2/

https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game2

Chess Player

Playing Black
The chess board we have crafted will be used by one of the chess players. We have already seen that
the player may be playing the white pieces or the black ones. So far we have seen the board from
the point of view of a player playing white. What about the other player? The board wouldn't look
right to him as the black pieces are on top.

We can employ a very simple change to achieve this. Remember how we layed out the pieces in the
board grid?

To get a board from the point of view of a player playing black, all we need do is invert the order of
the square locations. So, instead of going from {0,0} to {7,0} and so on, up to {7,7}, we'll go from
{7,7} to {0,7} and so on, up to {0,0}, as if we had turned the board upside down.

And we will re-construct the board the right way, for the white or the black player, when we are told
whether we are playing black or white. So, when constructing the default white board at the board
creation, we'll create a number of functions, closures, to keep in the board's state so that we can then
apply them to reconstruct the board when needed:

%% in chess_board.erl
 MkBoard =

fun(SquareMap, Seq) ->
wxSizer:clear(Grid),
[wx_object:stop(Sq) || Sq <- maps:values(SquareMap)],
SquareList = [MkSquare(C,R) || R <- Seq, C <- Seq],
[wxSizer:add(Grid, Square, [{flag, ?wxEXPAND}])
 || {_, Square} <- SquareList],
SquareList

end,

 MkWhiteBoard = fun(ChessBoard, SquareMap) ->
 Squares = MkBoard(SquareMap, lists:seq(0,7)),
 wxPanel:layout(ChessBoard),
 Squares

 end,
 MkBlackBoard = fun(ChessBoard, SquareMap) ->

 Squares = MkBoard(SquareMap, lists:seq(7,0,-1)),
 wxPanel:layout(ChessBoard),
 Squares

 end,

 SquareMap = maps:from_list(MkWhiteBoard(Board, #{})), %% default board

...

 State = #{frame => Frame,
 board => Board,
 layout => Layout,
 make_white_board => MkWhiteBoard,
 make_black_board => MkBlackBoard,
 image_map => ImageMap,
 {white, brush} => WhiteBrush,
 {black, brush} => BlackBrush,
 selected_brush => SelectedBrush,
 background_brush => BackgroundBrush,
 square_pid_map => SquarePidMap,
 selected => none},

Note that we use the function wxSizer:clear/1. This will remove all widgets added to the sizer.

A flag can be provided to destroy the removed widgets. However, we don't have "real" widgets in
our implementation, but wx_objects. So, we make sure we terminate all of them by explicitly

calling wx_object:stop/1.

Note also that we use wxWindow:layout/1 after having added all the new square widgets to the

grid sizer. This is necessary because the sizer has not had the opportunity to adjust the added
widgets to their proper places and sizes according to its constraints. (In fact, if you omit this step, all
the new widgets will get drawn one on top of the other in the upper left corner of the board).

To layout the board correctly, someone must inform the board which colour it will play. We do this

by sending it the message {role, Colour}.

%% in chess_board.erl

handle_info({role, Role},
 State = #{board := Board,

 image_map := ImageMap,
 make_white_board := MkWhiteBoard,
 make_black_board := MkBlackBoard,
 square_map := PreviousSquareMap}) ->

 SquareMap = maps:from_list(
 case Role of
 white -> MkWhiteBoard(Board, PreviousSquareMap);
 black -> MkBlackBoard(Board, PreviousSquareMap)
 end),

 Layout = ?UTILS:init_board(),
 SquarePidMap = maps:map(fun(_,V) -> wx_object:get_pid(V) end, SquareMap),
 layout_pieces(Layout, ImageMap, SquarePidMap),

 {noreply, State#{layout => Layout,
 square_map => SquareMap,
 square_pid_map => SquarePidMap}};

Let's verify the board does place the pieces correctly for the black player by compiling everything17
again:

9> B = chess_board:start_link().
{wx_ref,35,wxFrame,<0.2461.0>}
10> wx_object:get_pid(B) ! {role, black}.

17 game3/

https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game3

{role,black}
11> wx_object:get_pid(B) ! {play, black}.
{play,black}
12>

Chess Clock revisited
We're getting closer to having a fully working chess board players can use. However, the clock we
crafted in Getting Started is not really that useful as a chess clock. For one, chess game durations,
even those of fast chess games, are hardly ever in the order of seconds, but more like hours and
minutes. For another, chess players require strong concentration. They can't be distracted with a
countdown of seconds left. To remedy this, we will have our clock display hours and minutes and
not seconds. We will use a colon to separate the two, and have it flash on and off every second just
to show when the clock is actually running.

Nevertheless, during the last few minutes, chess players need to have some idea of what fraction of
a minute is still available. This is more of a qualitative indication than a quantitative one. So chess
clocks have a small red hand-like indicator around minutes 57. It gets lifted up gradually by the
minutes hand, until at the hour, this indicator falls down vertical. The angle of this hand gives a
clearer indication to the chess player on how much time he still has.

The sequence of images below, with just the minutes hand and the time-up indicator hand illustrates
this:

We will try something simpler for the last minute. We will use a guage that will appear in the last
minute only. And since there will be two clocks, one for each player, we will want to provide some
indication on which clock is which. We will do this by having the clock surrounded with a white or
black border:

We'll want a clock like the one on the left. And this can be built with just two widgets, as can be
seen on the right: a static text and a gauge. We will put the two widgets in a vertical box sizer, each
with a border on just three of the four sides. We'll make the underlying panel the colour of the
player's pieces so the border turns out the right colour.

Let's try it in a small help module:

init([]) ->
 wx:new(),
 Frame = wxFrame:new(wx:null(), -1, ""),
 wxFrame:setBackgroundColour(Frame, {255,255,255}),
 Sz = wxBoxSizer:new(?wxVERTICAL),

 T = wxStaticText:new(Frame, -1, "12:34", [{style, ?wxALIGN_CENTRE}]),
 wxStaticText:setBackgroundColour(T, {200,200,200}),
 wxSizer:add(Sz, T, [{flag, ?wxLEFT bor ?wxTOP bor ?wxRIGHT bor ?wxEXPAND},
{border, 5}]),

 Gauge = wxGauge:new(Frame, -1, 60, [{style, ?wxGA_HORIZONTAL bor ?
wxGA_SMOOTH}, {size, {-1, 16}}]),
 wxSizer:add(Sz, Gauge, [{flag, ?wxLEFT bor ?wxBOTTOM bor ?wxRIGHT bor ?
wxEXPAND}, {border, 5}]),

 wxFrame:setSizer(Frame, Sz),
 wxSizer:setSizeHints(Sz, Frame),

 wxFrame:show(Frame),
 {Frame, #state{}}.

Static Text quirks
If we compile and run this, we'll be in for a surprise under Linux (the one on the left).

The static text in the Linux version is neither correctly aligned, nor has the correct backgorund
colour. The underlying GTK in Linux does not support text widgets with their own background
panel. GTK automatically resizes the text widget to the size of the text, so even though the text is

correctly aligned internally, it does not show. To make it work, we have to provide our own
background panel.

%% in chess_clock.erl

init([]) ->
 wx:new(),
 Frame = wxFrame:new(wx:null(), -1, ""),
 wxFrame:setBackgroundColour(Frame, {255,255,255}),
 Sz = wxBoxSizer:new(?wxVERTICAL),

 BGPanel = wxPanel:new(Frame),
 T = wxStaticText:new(BGPanel, -1, "12:34", []),

 TSz = wxBoxSizer:new(?wxVERTICAL),
 wxSizer:add(TSz, T, [{flag, ?wxALIGN_CENTRE}]),
 wxPanel:setSizer(BGPanel, TSz),

 wxSizer:add(Sz, BGPanel, [{flag, ?wxLEFT bor ?wxTOP bor ?wxRIGHT bor ?
wxEXPAND}, {border, 5}]),

 Gauge = wxGauge:new(Frame, -1, 60, [{style, ?wxGA_HORIZONTAL bor ?
wxGA_SMOOTH}, {size, {-1, 16}}]),
 wxSizer:add(Sz, Gauge, [{flag, ?wxLEFT bor ?wxBOTTOM bor ?wxRIGHT bor ?
wxEXPAND}, {border, 5}]),

 wxFrame:setSizer(Frame, Sz),
 wxSizer:setSizeHints(Sz, Frame),

 wxFrame:show(Frame),
 {Frame, #state{}}.

And this time around, we get what we desired:

Keeping the board square
So now we have the board, the two clocks and of course a push button to say the player has moved,
let's see how to put them all together into a frame. This is how we suppose it will look like:

We could achieve this with a vertical box sizer whose first element is a horizontal box sizer with the
two clocks. We'll let the frame represent the chess player and put the code in the module

chess_player.erl. In starting it, we'll pass it the player's name to use as the frame caption.

Here's what chess_player:init/1 would look like:

%% in chess_player.erl

start_link(PlayerName) ->
 wx_object:start_link(?MODULE, [PlayerName], []).

init([PlayerName]) ->
 wx:new(),
 Frame = wxFrame:new(wx:null(), ?wxID_ANY, PlayerName),
 Sz = wxBoxSizer:new(?wxVERTICAL),

 Ck1 = chess_clock:start_link(Frame, self()),
 Ck2 = chess_clock:start_link(Frame),

 CkSz = wxBoxSizer:new(?wxHORIZONTAL),
 wxSizer:add(CkSz, Ck1, [{proportion, 1}, {flag, ?wxEXPAND}]),
 wxSizer:add(CkSz, Ck2, [{proportion, 1}, {flag, ?wxEXPAND}]),
 wxSizer:add(Sz, CkSz, [{flag, ?wxEXPAND}]),

 Board = chess_board:start_link(Frame, self()),
 wxSizer:add(Sz, Board, [{proportion, 1}, {flag, ?wxEXPAND}]),

 Button = wxButton:new(Frame, -1, [{label, "Moved"}]),
 wxButton:disable(Button),
 wxSizer:add(Sz, Button, [{flag, ?wxEXPAND}]),

 wxFrame:setSizer(Frame,Sz),
 wxFrame:layout(Frame),

 wxFrame:show(Frame),

 {Frame, #{name => PlayerName,
 frame => Frame,
 my_clock_pid => wx_object:get_pid(Ck1),
 other_clock_pid => wx_object:get_pid(Ck2),
 board_pid => wx_object:get_pid(Board),

board => Board,
 button => Button}}.

We won't try it just yet. Let's first try to make the board square. At least when we start
chess_player.

We do this by taking the bigger of the board's width and height and readjusting the size of the frame
by that amount so the board comes out square.

%% in chess_player.erl

 {FW, FH} = wxFrame:getSize(Frame),
 {BW,BH} = wxPanel:getSize(Board),
 Dw = max(BW,BH) - BW,
 Dh = max(BW,BH) - BH,
 wxFrame:setSize(Frame, FW + Dw, FH + Dh),

Beware. We need to set the size of the frame after "showing" the frame.

Handling key events
While we are at it, let's also provide a means to make the board bigger or smaller while keeping it
square. Since the players won't often be changing the size, let's resize the board with some key
combination: Ctrl+ to increase the size and Ctrl- to make it smaller.

All we need do is subscribe to the keystroke event and when the player presses Ctrl+, we increase
the size of the frame. First, let's look at the wx documentation for the key event:

Use wxEvtHandler:connect/3 with EventType:
char, char_hook, key_down, key_up

See also the message variant #wxKey{} event record type.

And #wxKey{} is defined as:

wxKey() =
#wxKey{type=wxKeyEventType(), x=integer(), y=integer(),

 keyCode=integer(), controlDown=boolean(),
 shiftDown=boolean(), altDown=boolean(), metaDown=boolean(),
 scanCode=boolean(), uniChar=integer(), rawCode=integer(), rawFlags=integer()}

So we subscribe to the key_up event in chess_player's init/1:

 wxFrame:connect(Frame, key_up),

and then handle that event in handle_event/2:

handle_event(#wx{event=#wxKey{keyCode = KeyCode, controlDown = true}},
 State = #{frame := Frame}) ->

 {W,H} = wxFrame:getSize(Frame),
 case KeyCode of

$+ -> wxFrame:setSize(Frame,W+8,H+8);
$- -> wxFrame:setSize(Frame,W-8,H-8);
_ -> ok

 end,
 {noreply, State};

handle_event(#wx{} = _Wx, State) ->
 {noreply, State}.

It's about time to see if our design18 worked.

4> chess_player:start_link("").
{wx_ref,35,wxFrame,<0.137.0>}
5>

18 game4/

https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game4
http://erlang.org/doc/man/wxEvtHandler.html#type-wxKey
http://erlang.org/doc/man/wxKeyEvent.html

The frame's there alright, but the clocks don't have white or black borders. Come to think of it, we
didn't inform the clocks which colour to paint their borders with, did we? We'll fix that soon
enough.

The board does start square. Let's try Ctrl+ or Ctrl- to resize it. Huh? No joy!

Keyboard focus
Without making it too mysterious, wxWidgets sends key events to the widget that has the focus. We
didn't say which widget should get the focus, did we?

To set the focus on a widget we need to apply wxWindow:setFocus/1. However, make sure you

set the focus only on widgets that can handle key events. wxFrames, for example, do not handle key
events. Even then, when we set the focus, it is actually given to one of the child widgets, if any. The
last one to get painted, as the matters go.

In our case with a white chessboard, that would be the square at the location {0,0} or the top-left
corner. So, ok, we will set the keyboard focus on the board itself. And we have to remember another
thing as well. Key events are not command events, so they don't get propagated automatically to the
parent widgets.

It may not make too much sense because it is written for the C++ binding, but the wxWidgets
documentation does give us some useful information on this:

... events set to propagate (See: wxEvent::ShouldPropagate) (most likely derived either directly or
indirectly from wxCommandEvent) will travel up the containment hierarchy from child to parent
until the maximal propagation level is reached or an event handler is found that doesn't call
event.Skip().

http://docs.wxwidgets.org/2.8.8/wx_eventhandlingoverview.html#eventhandlingoverview

So there's our problem solved. We need to set the focus on the board, handle the key event in

chess_square and propagate it to chess_player through chess_board.

Still, there's a problem. We won't be using wxEvent:resumePropagation/2 as it applies to

wxEvent objects and we are not using callbacks to handle the event. If we stop to think a little bit,

we'll realize that with wx_object's way of capturing the event, we are in the Erlang world, and can
easily "propagate" the event to the parent widget by means of Erlang message passing.

%% in chess_player:init/1
 wxPanel:setFocus(Board)

%% in chess_square:init/1
 wxPanel:connect(Panel, key_up),

%% in chess_square.erl
handle_event(#wx{event = #wxKey{} = Event}, State = #{board_pid := BoardPid})
->
 BoardPid ! {propagate_event, Event},
 {noreply, State};

%% in chess_board.erl
handle_info({propagate_event, Event}, State = #{player_pid := PlayerPid}) ->
 PlayerPid ! {propagate_event, Event},
 {noreply, State};

%% in chess_player.erl
handle_info({propagate_event, #wxKey{keyCode = $+, controlDown = true}},

 State = #{frame := Frame}) ->
 {W,H} = wxFrame:getSize(Frame),
 wxFrame:setSize(Frame,W+8,H+8),
 {noreply, State};
handle_info({propagate_event, #wxKey{keyCode = $-, controlDown = true}},

 State = #{frame := Frame}) ->
 {W,H} = wxFrame:getSize(Frame),
 wxFrame:setSize(Frame,W-8,H-8),
 {noreply, State};
handle_info({propagate_event, _Event}, State) ->
 {noreply, State};

Let's try19 again. This time we should be able to resize the square using the key combinations Ctrl+
and Ctrl-.

In the next section, we will finally design the players' interactions and start a real game between two
players.

19 game5 /

https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game5
https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game5

Playing the game
Now let's figure out how the game will get played. We have two players, each on a different
computer. So first thing, they must "see" each other. We will do that using distributed Erlang.
However, we can't have everyone in the world know each other, so we'll set up the communication
through a third party, an arbiter, which could run on a "known" Erlang node. We'll develop the

arbiter in the module chess_arbiter and will register it as such in the global registry.

When chess_player is started, no game is being played and we still do not know if the player

will play black or white. So, we will paint the board a different colour to indicate it is not yet active.
We will indicate this in the square's state and so will pass the square colours when not active in the
square's constructor:

%% in chess_square.erl

start_link(Location, BoardPid, Parent, ActiveBrush, InactiveBrush,
SelectedBrush) ->
 wx_object:start_link(
 ?MODULE, [Location, BoardPid, Parent, ActiveBrush, InactiveBrush,
SelectedBrush], []).

%% in init/1
 State = #{
 location => Location,
 board_pid => BoardPid,
 square_panel => Panel,
 image => none,
 active_brush => ActiveBrush,
 inactive_brush => InactiveBrush,
 selected_brush => SelectedBrush,
 selectable => false,
 selected => false,
 active => false},

When painting the square, we will use the active or inactive brush depending on if active is true

or false. Initially, as we can see above, the squares will be in the inactive state because there is no
game being played yet.

We will construct the active and inactive brushes for white and black in chess_board and pass the

appropriate brushes in the square constructor:

%% in chess_board.erl

 ActiveWhiteBrush = wxBrush:new(?WHITE),
 ActiveBlackBrush = wxBrush:new(?BLACK),
 InactiveWhiteBrush = wxBrush:new({150,150,150}),
 InactiveBlackBrush = wxBrush:new({100,100,100}),

MkSquare =
fun(C,R) ->

SquareColour = ?UTILS:square_colour(C,R),
ActiveBrush = case SquareColour of

 white -> ActiveWhiteBrush;
 black -> ActiveBlackBrush

 end,
InactiveBrush = case SquareColour of

 white -> InactiveWhiteBrush;

 black -> InactiveBlackBrush
end,

Square = ?SQUARE:start_link(
 {C,R},
 self(),
 Board,
 ActiveBrush,
 InactiveBrush,
 SelectedBrush),

{{C,R}, Square}
end,

Once the game starts, the player will be either black or white. This, we will call the player's role

and will keep in the chess_player state. Initially, it will be undefined.

Menus
We will let the player request to play a game through a Game menu in a menu bar we will add to the

frame.

%% in chess_player:init/1

 MB = wxMenuBar:new(),

 GameMenu = wxMenu:new([]),
 wxMenu:append(GameMenu, ?wxID_NEW, "&New Game"),
 wxMenu:appendSeparator(GameMenu),
 wxMenu:append(GameMenu, ?wxID_EXIT, "&Quit"),

 BoardMenu = wxMenu:new([]),
 wxMenu:append(BoardMenu, ?wxID_ZOOM_IN, "&Bigger\tCtrl++"),
 wxMenu:append(BoardMenu, ?wxID_ZOOM_OUT, "&Smaller\tCtrl+-"),

 HelpMenu = wxMenu:new([]),
 wxMenu:append(HelpMenu, ?wxID_ABOUT, "&About"),
 wxMenu:append(HelpMenu, ?wxID_HELP, "&Help"),

 wxMenuBar:append(MB, GameMenu, "&Game"),
 wxMenuBar:append(MB, BoardMenu, "&Board"),
 wxMenuBar:append(MB, HelpMenu, "&Help"),

 wxFrame:setMenuBar(Frame,MB),

Here we create three menus in the menu bar: Game, Board and Help. The Game menu has items
New Game and Quit. The Board menu has items Bigger and Smaller to resize the board. The Help
menu has items About and Help.

Menu items have identities, some of which are pre-defined and a helper macro is available (eg ?

wxID_EXIT). In Linux, when using these identities, icons and keyboard shortcuts are automatically

added.

An ampersand sign in the label is used to provide a keyboard mnemonic. It lets the letter following
the ampersand to be underlined (in Windows), and the key corresponding to that letter to be used in
combination with the alt key to invoke the item. The menu label can include the keyboard shortcut
using the tab character (\t). Here we have added those for the items Bigger amd Smaller.

The menu bar is attached to the frame with wxFrame:setMenuBar/2.

Please note that menu items are appended to menus, while menus are appended to the menu bar. A
separator can be appended to a menu and will simply draw a separating line in the menu.

One thing to keep in mind is that we do not need to destroy the menu or menu items. The menu bar
destructor, and thus the frame's destructor, will take care of that. In fact, according to the wxWidgets
documentation:

All menus attached to a menubar or to another menu will be deleted by their parent when it is
deleted. As the frame menubar is deleted by the frame itself, it means that normally all menus used
are deleted automatically.

If you are using MacOS X or PalmOS, you may want to keep in mind that:

wxID_ABOUT and wxID_EXIT are predefined by wxWidgets and have a special meaning since
entries using these IDs will be taken out of the normal menus under MacOS X and will be inserted
into the system menu (following the appropriate MacOS X interface guideline). On PalmOS
wxID_EXIT is disabled according to Palm OS Companion guidelines.

So let's see20 how that turns out to be before going any further.

20 game6/

https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game6
http://docs.wxwidgets.org/2.8.12/wx_wxmenu.html#wxmenu

It seems like the menus are there alright. The board does display all greyed out because the game
has not yet started. Cool. Let's move on to handling the menu.

When the user selects a menu item, an event is generated. We need to subscribe to that event in

order to handle it. Let's check in the wxMenuEvent documentation what we need to subscribe to:

Use wxEvtHandler:connect/3 with EventType:
menu_open, menu_close, menu_highlight

See also the message variant #wxMenu{} event record type.

The type #wxMenu{} is defined as:

wxMenu() = #wxMenu{type=wxMenuEventType(), menuId=integer(),
menu=wxMenu:wxMenu()}

menu_open, menu_close or menu_highlight do not seem like what we were expecting, do

they? So let's look at the wxWidgets documentation for some inspiration:

wxMenuEvent
This class is used for a variety of menu-related events. Note that these do not include menu
command events, which are handled using wxCommandEvent objects.

Ok, that explains it. Back to the wxCommandEvent documentation, we see that:

Use wxEvtHandler:connect/3 with EventType:

command_button_clicked, command_checkbox_clicked, command_choice_selected,
command_listbox_selected, command_listbox_doubleclicked, command_text_updated,

http://erlang.org/doc/man/wxCommandEvent.html
http://erlang.org/doc/man/wxEvtHandler.html#type-wxMenu
http://erlang.org/doc/man/wxMenuEvent.html

command_text_enter, command_menu_selected, command_slider_updated,
command_radiobox_selected, command_radiobutton_selected, command_scrollbar_updated,
command_vlbox_selected, command_combobox_selected, command_tool_rclicked,
command_tool_enter, command_checklistbox_toggled, command_togglebutton_clicked,
command_left_click, command_left_dclick, command_right_click, command_set_focus,
command_kill_focus, command_enter

See also the message variant #wxCommand{} event record type.

and #wxCommand{} is defined as:

wxCommand() = #wxCommand{type=wxCommandEventType(), cmdString=unicode:chardata(),
commandInt=integer(), extraLong=integer()}

So let's subscribe to the command_menu_selected event and handle the menu item Bigger. Let's also
add a printout in the catchall event handler to see what we are not explicitly handling:

%% in chess_player:init/1

 wxFrame:connect(Frame, command_menu_selected),

%% in chess_player.erl

handle_event(#wx{id=?wxID_ZOOM_IN,
 event=#wxCommand{type = command_menu_selected}},

 State = #{frame := Frame}) ->
 {W,H} = wxFrame:getSize(Frame),
 wxFrame:setSize(Frame,W+8,H+8),
 {noreply, State};

handle_event(#wx{} = _Wx, State) ->
 io:format("chess_player got event ~p~n", [_Wx]),
 {noreply, State}.

If we recompile21 and run chess_player:start_link(""), we can test the menu items.

Selecting the menu item Bigger under menu Board will indeed make the board bigger because we
are handling that menu. If, instead, we select the item Smaller, we get the printout:

got event {wx,5138,
 {wx_ref,35,wxFrame,[]},
 [],
 {wxCommand,command_menu_selected,[],-1,0}}

which is practically what we expected.

Let's now retry our key bindings. Ctrl+ makes the board bigger as expected and there is no printout
in the shell. Ctrl- makes the board smaller, and we get the printout as if we had selected the menu
item Smaller. However, to bring the board size back to what it was, we have to make it smaller
twice more. In other words, each Ctrl+ triggers the menu Bigger, as well as the keystroke handling,
so the board increases in size by 16 pixels.

That said, we don't need to handle the key event in chess_square and propagate it up to
chess_player through chess_board. Binding the key combination to the menu items serves the same
purpose.

21 game7/

https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game7
http://erlang.org/doc/man/wxEvtHandler.html#type-wxCommand

About menu

Handling22 of the About menu is straightforward. We just display some message in a message
dialog.

handle_event(#wx{id=?wxID_ABOUT,
 event=#wxCommand{type = command_menu_selected}},

 State = #{frame := Frame}) ->
 M = wxMessageDialog:new(Frame, "A demonstration of wxErlang\n(c) Arif
Ishaq, 2018\nThis work is licensed under the\nCreative Commons Attribution-
ShareAlike 4.0\nInternational License."),
 wxMessageDialog:showModal(M),
 {noreply, State};

New Game menu

Let's now think about starting the game. We've already said the two players will be on differnt
Erlang nodes. And we also know from Getting Started that we need an arbiter to coordinate the
game. The arbiter will be on some known node to which the players can connect. How should we
start the game? At first I had thought it was a simple matter of a player starting the game, but if we
let the two players be on different machines, perhaps half a world apart, it is not that simple after
all. So, here is what I have implemented. You may want to think of a different scheme.

I let a player connect to the node where the arbiter is running. Then the player lets the arbiter know
it is willing to play a game with some other player and indicates the minimum and maximum
duration of the game he is willing to play. The player also indicates how long he is willing to wait
for some other player to join.

To do this, the player must select New Game from the Game menu. This will pop up a dialog in
which the player can select the minimum and maximum durations and the maximum amount of
time he is willing to wait for the other player to join. We will let the player select these values using

wxSpinCtrl widgets. Here is what our dialog will look like:

22 game8/

https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game8

We implement it in the module chess_new_game_dialog. We employ a wxGridBagSizer this

time, just to demonstrate how that works.

 D = wxDialog:new(Frame, ?wxID_ANY, "New Game"),
 Sz = wxGridBagSizer:new(),

In creating the spin controls, we specify the minimum, the maximum and the default value and that
the arrow keys be shown:

 MinDurationCtrl = wxSpinCtrl:new(D, [{style, ?wxSP_ARROW_KEYS}, {min, 1},
{max, 180}, {initial, 5}]),

The text labels are all wxStaticText widgets. We request the sizer to align them right.

Now here's the novelty. To add the widgets to the sizer, we imagine it as a grid and specify the zero-
based coordinates of the cell where we want the widget placed:

 wxGridBagSizer:add(Sz,
 wxStaticText:new(D, ?wxID_ANY, "Min duration"),
 {0,0},
 [{flag, ?wxALIGN_CENTER_VERTICAL bor ?wxALIGN_RIGHT bor ?wxALL},
 {border, 5}]),

 wxGridBagSizer:add(Sz,
 MinDurationCtrl,
 {0,1},
 [{flag, ?wxALL}, {border, 5}]),

And what's more, we can also specify how many columns and rows the widget will occupy. So, for
example, we will let the Ok button occupy just one row, but two columns:

 OK = wxButton:new(D, ?wxID_OK, [{label, "OK"}]),
 wxButton:setDefault(OK),
 wxGridBagSizer:add(Sz, OK, {3,1},
 [{span, {1,2}}, {flag, ?wxALL bor ?wxEXPAND}, {border, 5}]),

Finally, we show the dialog with wxDialog:showModal/1.

In the New Game menu item handler in chess_player, we simply start

chess_new_game_dialog, which returns a reference to the dialog.

%% in chess_player.erl
handle_event(#wx{id = ?wxID_NEW, event = #wxCommand{type =
command_menu_selected}}, State = #{name := Name, frame := Frame}) ->
 D = chess_new_game_dialog:start_link(Frame),

However, there's a problem. When we "end" the dialog by pressing Ok or Cancel, the dialog will

close, but chess_player won't know anything. Even if chess_player could somehow block, to

capture what dialog:showModal/1 returned, that would at most say which of the two buttons

was pressed and not what the values of the various spin controls were.

We solve both problems by having the chess_new_game_dialog module implement the function

get_choice/1 that chess_player can call. It will return the user's choice, ok or cancel, and a

map of the spin control values in case the user had actually chosen the Ok button.

%% in chess_new_game_dialog

get_choice(Dialog) ->

 gen_server:call(Dialog, get_choice, infinity).

handle_call(get_choice, _From,
 State = #{dialog := D,

 min_ctrl := MinDurationCtrl,
 max_ctrl := MaxDurationCtrl,
 wait := WaitCtrl}) ->

 Choice = case wxDialog:getReturnCode(D) of
 ?wxID_OK -> ok;
 ?wxID_CANCEL -> cancel

 end,
 MinDuration = wxSpinCtrl:getValue(MinDurationCtrl),
 MaxDuration = wxSpinCtrl:getValue(MaxDurationCtrl),
 Wait = wxSpinCtrl:getValue(WaitCtrl),

 Reply = {Choice, #{min_duration => MinDuration,
 max_duration => MaxDuration,

 max_wait => Wait}},
 {stop, normal, Reply, State}.

So when chess_player calls

chess_new_game_dialog:get_choice(wx_object:get_pid(D))

it will block until the chess_new_game_dialog returns the user's selection and the spin control

values.

wxErlang limitation

Note that the user could select a minimum duration which is greater than the maximum duration.
We would like to avoid this by signalling the inconsistency, by say, changing the colour of the
durations to red, and disabling the OK button, and so on.

The wx documentation on wxSpinEvent does suggest some events we can subscribe to for this
purpose:

Use wxEvtHandler:connect/3 with EventType:
 command_spinctrl_updated, spin_up, spin_down, spin

See also the message variant #wxSpin{} event record type.

However, any such attempt will fail, because there is a limitation in the wxErlang implementation
of dialogs. When you use wxDialog:showModal, wx blocks altogether until you close the modal
dialog. It clearly says so in the wx documentation:

Currently the dialogs' show modal function freezes wxWidgets until the dialog is closed. That is
intended but in Erlang, where you can have several GUI applications running at the same time, it
causes trouble. This will hopefully be fixed in future wxWidgets releases.

Synchronizing new game requests
Now let's go back to figuring out how to synchronize the game between the two remote players.

http://erlang.org/doc/apps/wx/chapter.html#id62401
http://erlang.org/doc/man/wxSpinEvent.html

chess_arbiter will get a request from a chess_player, which the chess_player will

somehow generate after obtaining the player's choices, as we have just seen, and will wait for the
maximum time, indicated in the request, for a request to play from a second player.

When a similar request is received from a second player within the maximum time, and this second
player is willing to play for the durations compatible with the first player's wishes, the arbiter will
inform both players they should prepare to start the game after some time. This, because the first
player may be doing something while waiting for a second player. Once that time has passed, the
arbiter will choose which colour each player will play, inform them of this so they can set their
boards and clocks accordingly, and then tell them to start the game. White will make the first move,
so the white clock will be requested to start ticking.

This all seems ok, but there is a problem. How will the arbiter know how to contact the players?

If chess_player were to send the request in an Erlang message, it could include its pid in that

message. However, the player is on a different node, and his pid, as he can find out with self/0, is

a pid local to the node he is running on and does not make much sense in another node. The

solution I have found is provided by the gen_server:handle_call function. According to the

wx documentation:

Module:handle_call(Request, From, State) -> Result
 Types
 Request = term()
 From = {pid(),Tag}
 State = term()
 Result = {reply,Reply,NewState} | {reply,Reply,NewState,Timeout}
 | {reply,Reply,NewState,hibernate}
 | {noreply,NewState} | {noreply,NewState,Timeout}
 | {noreply,NewState,hibernate}
 | {stop,Reason,Reply,NewState} | {stop,Reason,NewState}
 Reply = term()
 NewState = term()
 Timeout = int()>=0 | infinity
 Reason = term()

From is a tuple {Pid,Tag}, where Pid is the pid of the client

There! If chess_player were to make the request with a gen_server:call, the arbiter could

pick up the pid from that call invocation. Let's call that invocation want_to_play:

%% in chess_player.erl

handle_event(#wx{id = ?wxID_NEW, event = #wxCommand{type =
command_menu_selected}}, State = #{name := Name, frame := Frame}) ->

 D = chess_new_game_dialog:start_link(Frame),

 case chess_new_game_dialog:get_choice(wx_object:get_pid(D)) of
{ok, #{min_duration := MinDuration,
 max_duration := MaxDuration,
 max_wait := MaxWait}} ->

 chess_arbiter:want_to_play(Name, MinDuration, MaxDuration, MaxWait);
 _ -> ok
 end,
 {noreply, State};

and in chess_arbiter:

want_to_play(Name, MinDuration, MaxDuration, MaxWait) ->
 gen_server:call({global, chess_arbiter},

 {want_to_play, Name, MinDuration, MaxDuration, MaxWait}).

We won't go into the details of how chess_arbiter handles all this, as it has little to do with

wxErlang. Besides, you can read the code23 if you are curious.

If no other player makes a request to play within the maximum time a player is ready to wait,

chess_arbiter will send it the message nomatch.

If, on the other hand, a request to play is matched with one from another player, chess_arbiter

will send the two players a sequence of messages. First the message {prepare_to_play,

Name2, Duration, StartDelay}, where Name2 is the name of the other player, Duration is

the number of minutes the game is allowed to last and StartDelay is the number of seconds after

which the game will start. Then, after StartDelay seconds, the messages {role, Colour,

Layout}, where Colour is the colour the player will play and Layout is the board layout to start

with; and {play, Colour}, where Colour is the colour whose turn it is to play.

Next we'll see what chess_player will do upon receiving these messages.

Counting down to start
Upon receiving the message to prepare to play, we will let chess_player do a count down to

game start, so that the players will see the game is about to start and stop doing other stuff.

chess_player will also reset the two clocks to the duration of the game.

handle_info({prepare_to_play, _Opponent, Duration, When},
 State = #{frame := Frame,

 my_clock_pid := MyCk,
 other_clock_pid := OtherCk}) ->

 chess_countdown:start_link(Frame, When),
 MyCk ! {reset, Duration*60},
 OtherCk ! {reset, Duration*60},
 {noreply, State};

Although we did develop a countdown widget in Getting Started, let's develop another one using a
simple static text, instead of the text control, as we don't need to edit that text.

The reason I choose to develop one with static text is to demonstrate how to centre the text in a
frame. If you recall, we said static text in GTK is not associated with a panel, so alignment through
styles doesn't work, and we have to align it in a containing widget by menas of a sizer.

In paricular, we use "stretchable" spaces. In a vertical box sizer, we would add them above and
below the static text:

 D = wxDialog:new(Frame, ?wxID_ANY, "Count down to start", [{style, ?
wxSTAY_ON_TOP bor ?wxCAPTION bor ?wxCLOSE_BOX}, {size, {200,200}}]),
 Label = integer_to_list(Seconds),
 Sz = wxBoxSizer:new(?wxVERTICAL),
 Count = wxStaticText:new(D, ?wxID_ANY, Label, [{style, ?wxALIGN_CENTRE}]),

23 game9/

https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game9

 Font = wxFont:new(64, ?wxFONTFAMILY_TELETYPE, ?wxFONTSTYLE_NORMAL, ?
wxFONTWEIGHT_NORMAL),
 wxStaticText:setFont(Count, Font),
 wxSizer:addStretchSpacer(Sz),
 wxSizer:add(Sz,Count,[{flag, ?wxALIGN_CENTRE}]),
 wxSizer:addStretchSpacer(Sz),
 wxDialog:setSizer(D, Sz),

addStretchSpacer is actually just a shorthand notation for adding a "null" widget with

instructions to the sizer to expand the widget in proprortion.

As we can see from the figure below:

the two "null" widgets will expand equally if the frame is resized and the static text will remain
centred.

Setting the player colour
The second message, {role, Colour, Layout}, informs the player what his colour will be and

what the initial layout of the pieces looks like. Even though the layout is always the same, this
allows us to "reset" the layout if we were to start afresh. It also allows us to play variants, like
Chess960.

The player forwards the message to the board and sets the colours of the two clocks.

%% in chess_player.erl

handle_info({role, MyColour, Layout},
 State = #{board_pid := Board,

 my_clock_pid := MyCk,
 other_clock_pid := OtherCk}) ->

 Board ! {role, MyColour, Layout},
 MyCk ! {set_colour, MyColour},
 OtherCk ! {set_colour, chess_utils:opponent(MyColour)},
 {noreply, State#{role => MyColour}};

It also sets the state variable role to the assigned colour.

The board, in turn, will reconstruct all the squares according to the colour it will play. And since we
are now starting a game, it is not longer inactive, and all the squares will be set to the active state,
thus changing their colour from the inactive grey to the active colour:

%% in chess_board.erl

handle_info({role, Role, Layout},
 State = #{board := Board,

 make_white_board := MkWhiteBoard,
 make_black_board := MkBlackBoard,
 image_map := ImageMap}) ->

https://en.wikipedia.org/wiki/List_of_chess_variants

 SquaresMap = maps:from_list(case Role of
 white -> MkWhiteBoard(Board, #{});
 black -> MkBlackBoard(Board, #{})

 end),
 SquarePidMap = maps:map(fun(_,V) -> wx_object:get_pid(V) end, SquaresMap),
 layout_pieces(Layout, ImageMap, SquarePidMap),
 chess_utils:mark(active, true, maps:keys(SquaresMap), SquaresMap),
 {noreply, State#{role => Role,

 layout => Layout,
 square_map => SquaresMap,
 square_pid_map => SquarePidMap}};

Handling the turn
The final message, {play, Colour}, gets the game going. The players will start the clocks of the

colour which is playing, and the player whose turn it is to play, will tell the board to determine
which of its pieces can be moved and change the cursor to a hand in the relative squares.

%% in chess_player.erl

%% our move
handle_info({play, Colour}, State = #{board_pid := Board,

 role := Colour,
 my_clock_pid := MyCk,
 other_clock_pid := OtherCk}) ->

 Board ! prepare_to_select,
 MyCk ! {ticking, true},
 OtherCk ! {ticking, false},
 {noreply, State};

%% opponent's move
handle_info({play, _Colour}, State = #{my_clock_pid := MyCk,

 other_clock_pid := OtherCk}) ->
 MyCk ! {ticking, false},
 OtherCk ! {ticking, true},
 {noreply, State};

The board has to determine which of its pieces can be moved, but in order to do this it either has to
know the rules of the game, or has to ask some process that knows those rules. We implement the

rules in the module chess_rules.

Chess rules

Apart from some special rules, whether a given piece can be moved and to which positions is
determined mainly by the layout of all the pieces. The special rules apply to the pawn, the king and
the rook. Bear with me a moment to lay out these rules so we can understand why we have some

strange looking state variables in chess_board.

If the opponent had moved his pawn two squares trying to avoid being captured by a pawn of the
player whose turn it is to play, that pawn can be taken as if it had been moved only one square and
not two. This is called taking the pawn en passant. So, other than the layout, we must know if the
opponent did move his pawn two squares. We keep this information in the board's state variable

en_passant.

If the king has never moved then the king is allowd to castle on the side, queen's or king's, of the
rook that has never moved. We keep this information in the board's state variables

can_castle_queen_side, can_castle_king_side. Actually, this particular information is

needed only to determine where the king can be moved to, rather than if it can be moved at all.

If the player moved his king to castle, he must move the relative rook over. So we keep a state

variable castling and when that is true, the only allowed move is moving the rook over to

complete the castling.

If the player had already started castling by moving his king two squares in the direction of a rook,
the only possible move for the player is that rook. We keep this information in the state variable

castling.

Finally, the opponent may have moved a piece in such a way as to put the player under check. We

keep this info in the state variable under_check.

We won't go through how we implement the chess rules, but if you are curious, you can through the

module chess_rules. In particular, we implement the function get_movable/3, which takes a

list of square locations, the board layout and the en passant information to determine which of the
pieces in those square locations can be moved.

%% a taste of chess rules application

handle_info(prepare_to_select,
 State = #{role := Colour,

 player_pid := PlayerPid,
 layout := Layout,
 square_map := SquareMap,
 square_pid_map := SquarePidMap,
 under_check := UnderCheck,
 castling := Castling,
 en_passant := EnPassant}) ->

 SelectableSquares =
case Castling of
 {true, RookLocation} -> [RookLocation];
 false ->

SameColoured = chess_utils:get_squares(Colour, Layout),
chess_rules:get_movable(SameColoured, Layout, EnPassant)

end,

 %% if we can't select any square, it's either a checkmate or a draw
 case SelectableSquares of

[] ->
 case UnderCheck of

false ->
 PlayerPid ! {we_end, draw};
{true, KingLocation} ->
 %% not intuitive, but we need to remove the "under check"

highlighting
 maps:get(KingLocation, SquarePidMap) ! {under_check, false},
 PlayerPid ! {we_end, checkmate}

 end;
_ ->
 chess_utils:mark(selectable, true, SelectableSquares, SquareMap)

 end,
 {noreply, State};

There is a lot of messages going back and forth from one player's board to the other player's board,
mediated by the arbiter. This you can see in the code24, but from wxErlang point of view, there are
no further new concepts.

So you may want to go ahead and compile the code and play it with someone. Just to see what it
does, whether the rules are obeyed.

You will first need to start a node in which to run the chess_arbiter:

$ erl -name arbiter@192.168.56.101 -setcookie chess

Erlang/OTP 20 [erts-9.2] [source] [64-bit] [smp:2:2] [ds:2:2:10] [async-
threads:10] [hipe] [kernel-poll:false]

Eshell V9.2 (abort with ^G)
(arbiter@192.168.56.101)1> chess_arbiter:start_link().
{ok,<0.69.0>}
(arbiter@192.168.56.101)2>

Next, you start two chess_players from two other nodes after connecting the nodes to the arbiter
node. Here I start one player in Windows and one in the hosted Linux machine:

$ erl -name player1@192.168.56.101 -setcookie chess

Erlang/OTP 20 [erts-9.2] [source] [64-bit] [smp:2:2] [ds:2:2:10] [async-
threads:10] [hipe] [kernel-poll:false]

Eshell V9.2 (abort with ^G)
(player1@192.168.56.101)1> net_adm:ping('arbiter@192.168.56.101').
pong
(player1@192.168.56.101)2> chess_player:start_link("player1").
{wx_ref,35,wxFrame,<0.75.0>}
(player1@192.168.56.101)3>

> start werl -name player2@192.168.56.1 -setcookie chess

Erlang/OTP 20 [erts-9.0] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]

Eshell V9.0 (abort with ^G)
(player2@192.168.56.1)1> net_adm:ping('arbiter@192.168.56.101').
pong
(player2@192.168.56.1)2> chess_player:start_link("player2").
making a board
{wx_ref,35,wxFrame,<0.78.0>}
making a board
(player2@192.168.56.1)3>

24 game 9 /

https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game9
https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game9
https://github.com/arifishaq/wxerlang/tree/master/speeding_up/game9

You may want to see what happens when the time is up (in the last minute the gauge should start
indicating the end is near, for example).

You may also want to see what happens when a pawn marches all the way to the other side of the
board (it should get promoted to a queen, a bishop, a rook or a knight) and how the player is given
the choice to select what piece he wants the pawn promoted to.

Try to find out what happens when a user decides to quit from the menu, or when one player
checkmates the other.

Enjoy!

